• Stars
    star
    1,153
  • Rank 40,455 (Top 0.8 %)
  • Language
    Python
  • Created almost 5 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

NBA sports betting using machine learning

NBA Sports Betting Using Machine Learning ๐Ÿ€

A machine learning AI used to predict the winners and under/overs of NBA games. Takes all team data from the 2007-08 season to current season, matched with odds of those games, using a neural network to predict winning bets for today's games. Achieves ~75% accuracy on money lines and ~58% on under/overs. Outputs expected value for teams money lines to provide better insight. The fraction of your bankroll to bet based on the Kelly Criterion is also outputted. Note that a popular, less risky approach is to bet 50% of the stake recommended by the Kelly Criterion.

Packages Used

Use Python 3.8. In particular the packages/libraries used are...

  • Tensorflow - Machine learning library
  • XGBoost - Gradient boosting framework
  • Numpy - Package for scientific computing in Python
  • Pandas - Data manipulation and analysis
  • Colorama - Color text output
  • Tqdm - Progress bars
  • Requests - Http library
  • Scikit_learn - Machine learning library

Usage

Make sure all packages above are installed.

$ git clone https://github.com/kyleskom/NBA-Machine-Learning-Sports-Betting.git
$ cd NBA-Machine-Learning-Sports-Betting
$ pip3 install -r requirements.txt
$ python3 main.py -xgb -odds=fanduel

Odds data will be automatically fetched from sbrodds if the -odds option is provided with a sportsbook. Options include: fanduel, draftkings, betmgm, pointsbet, caesars, wynn, bet_rivers_ny

If -odds is not given, enter the under/over and odds for today's games manually after starting the script.

Optionally, you can add '-kc' as a command line argument to see the recommended fraction of your bankroll to wager based on the model's edge

Flask Web App

This repo also includes a small Flask application to help view the data from this tool in the browser. To run it:

cd Flask
flask --debug run

Getting new data and training models

# Create dataset with the latest data for 2022-23 season
cd src/Process-Data
python -m Get_Data
python -m Get_Odds_Data
python -m Create_Games

# Train models
cd ../Train-Models
python -m XGBoost_Model_ML
python -m XGBoost_Model_UO

Contributing

All contributions welcomed and encouraged.