MCMCLib Â
MCMCLib is a lightweight C++ library of Markov Chain Monte Carlo (MCMC) methods.
Features:
- A C++11/14/17 library of well-known MCMC algorithms.
- Parallelized samplers designed for multi-modal distributions, including:
- Adaptive Equi-Energy Sampler (AEES)
- Differential Evolution (DE)
- For fast and efficient matrix-based computation, MCMCLib supports the following templated linear algebra libraries:
- Automatic differentiation functionality is available through use of the Autodiff library
- OpenMP-accelerated algorithms for parallel computation.
- Straightforward linking with parallelized BLAS libraries, such as OpenBLAS.
- Available as a single precision (
float
) or double precision (double
) library. - Available as a header-only library, or as a compiled shared library.
- Released under a permissive, non-GPL license.
Contents:
- Algorithms
- Documentation
- General API
- Installation
- R Compatibility
- Examples
- Automatic Differentiation
- Author and License
Algorithms
A list of currently available algorithms includes:
- Adaptive Equi-Energy Sampler (AEES)
- Differential Evolution (DE-MCMC)
- Hamiltonian Monte Carlo (HMC)
- Metropolis-adjusted Langevin algorithm (MALA)
- No-U-Turn Sampler (NUTS)
- Random Walk Metropolis-Hastings (RWMH)
- Riemannian Manifold Hamiltonian Monte Carlo (RM-HMC)
Documentation
Full documentation is available online:
A PDF version of the documentation is available here.
API
The MCMCLib API follows a relatively simple convention, with most algorithms called in the following manner:
algorithm_id(<initial values>, <log posterior kernel function of the target distribution>, <storage for posterior draws>, <additional data for the log posterior kernel function>);
The inputs, in order, are:
- A vector of initial values used to define the starting point of the algorithm.
- A user-specified function that returns the log posterior kernel value of the target distribution.
- An array to store the posterior draws.
- The final input is optional: it is any object that contains additional data necessary to evaluate the log posterior kernel function.
For example, the RWMH algorithm is called using:
bool rwmh(const ColVec_t& initial_vals, std::function<fp_t (const ColVec_t& vals_inp, void* target_data)> target_log_kernel, Mat_t& draws_out, void* target_data);
where ColVec_t
is used to represent, e.g., arma::vec
or Eigen::VectorXd
types.
Installation
MCMCLib is available as a compiled shared library, or as header-only library, for Unix-alike systems only (e.g., popular Linux-based distros, as well as macOS). Use of this library with Windows-based systems, with or without MSVC, is not supported.
Requirements
MCMCLib requires either the Armadillo or Eigen C++ linear algebra libraries. (Note that Eigen version 3.4.0 requires a C++14-compatible compiler.)
Before including the header files, define one of the following:
#define MCMC_ENABLE_ARMA_WRAPPERS
#define MCMC_ENABLE_EIGEN_WRAPPERS
Example:
#define MCMC_ENABLE_EIGEN_WRAPPERS
#include "mcmc.hpp"
Installation Method 1: Shared Library
The library can be installed on Unix-alike systems via the standard ./configure && make
method.
First clone the library and any necessary submodules:
# clone mcmc into the current directory
git clone https://github.com/kthohr/mcmc ./mcmc
# change directory
cd ./mcmc
# clone necessary submodules
git submodule update --init
Set (one) of the following environment variables before running configure
:
export ARMA_INCLUDE_PATH=/path/to/armadillo
export EIGEN_INCLUDE_PATH=/path/to/eigen
Finally:
# build and install with Eigen
./configure -i "/usr/local" -l eigen -p
make
make install
The final command will install MCMCLib into /usr/local
.
Configuration options (see ./configure -h
):
   Primary
-h
print help-i
installation path; default: the build directory-f
floating-point precision mode; default:double
-l
specify the choice of linear algebra library; choosearma
oreigen
-m
specify the BLAS and Lapack libraries to link with; for example,-m "-lopenblas"
or-m "-framework Accelerate"
-o
compiler optimization options; defaults to-O3 -march=native -ffp-contract=fast -flto -DARMA_NO_DEBUG
-p
enable OpenMP parallelization features (recommended)
   Secondary
-c
a coverage build (used with Codecov)-d
a 'development' build-g
a debugging build (optimization flags set to-O0 -g
)
   Special
--header-only-version
generate a header-only version of MCMCLib (see below)
Installation Method 2: Header-only Library
MCMCLib is also available as a header-only library (i.e., without the need to compile a shared library). Simply run configure
with the --header-only-version
option:
./configure --header-only-version
This will create a new directory, header_only_version
, containing a copy of MCMCLib, modified to work on an inline basis. With this header-only version, simply include the header files (#include "mcmc.hpp
) and set the include path to the head_only_version
directory (e.g.,-I/path/to/mcmclib/header_only_version
).
R Compatibility
To use MCMCLib with an R package, first generate a header-only version of the library (see above). Then simply add a compiler definition before including the MCMCLib files.
- For RcppArmadillo:
#define MCMC_USE_RCPP_ARMADILLO
#include "mcmc.hpp"
- For RcppEigen:
#define MCMC_USE_RCPP_EIGEN
#include "mcmc.hpp"
Example
To illustrate MCMCLib at work, consider the problem of sampling values of the mean parameter of a normal distribution.
Code:
#define MCMC_ENABLE_EIGEN_WRAPPERS
#include "mcmc.hpp"
inline
Eigen::VectorXd
eigen_randn_colvec(size_t nr)
{
static std::mt19937 gen{ std::random_device{}() };
static std::normal_distribution<> dist;
return Eigen::VectorXd{ nr }.unaryExpr([&](double x) { (void)(x); return dist(gen); });
}
struct norm_data_t {
double sigma;
Eigen::VectorXd x;
double mu_0;
double sigma_0;
};
double ll_dens(const Eigen::VectorXd& vals_inp, void* ll_data)
{
const double pi = 3.14159265358979;
//
const double mu = vals_inp(0);
norm_data_t* dta = reinterpret_cast<norm_data_t*>(ll_data);
const double sigma = dta->sigma;
const Eigen::VectorXd x = dta->x;
const int n_vals = x.size();
//
const double ret = - n_vals * (0.5 * std::log(2*pi) + std::log(sigma)) - (x.array() - mu).pow(2).sum() / (2*sigma*sigma);
//
return ret;
}
double log_pr_dens(const Eigen::VectorXd& vals_inp, void* ll_data)
{
const double pi = 3.14159265358979;
//
norm_data_t* dta = reinterpret_cast< norm_data_t* >(ll_data);
const double mu_0 = dta->mu_0;
const double sigma_0 = dta->sigma_0;
const double x = vals_inp(0);
const double ret = - 0.5*std::log(2*pi) - std::log(sigma_0) - std::pow(x - mu_0,2) / (2*sigma_0*sigma_0);
return ret;
}
double log_target_dens(const Eigen::VectorXd& vals_inp, void* ll_data)
{
return ll_dens(vals_inp,ll_data) + log_pr_dens(vals_inp,ll_data);
}
int main()
{
const int n_data = 100;
const double mu = 2.0;
norm_data_t dta;
dta.sigma = 1.0;
dta.mu_0 = 1.0;
dta.sigma_0 = 2.0;
Eigen::VectorXd x_dta = mu + eigen_randn_colvec(n_data).array();
dta.x = x_dta;
Eigen::VectorXd initial_val(1);
initial_val(0) = 1.0;
//
mcmc::algo_settings_t settings;
settings.rwmh_settings.par_scale = 0.4;
settings.rwmh_settings.n_burnin_draws = 2000;
settings.rwmh_settings.n_keep_draws = 2000;
//
Eigen::MatrixXd draws_out;
mcmc::rwmh(initial_val, log_target_dens, draws_out, &dta, settings);
//
std::cout << "rwmh mean:\n" << draws_out.colwise().mean() << std::endl;
std::cout << "acceptance rate: " << static_cast<double>(settings.rwmh_settings.n_accept_draws) / settings.rwmh_settings.n_keep_draws << std::endl;
//
return 0;
}
On x86-based computers, this example can be compiled using:
g++ -Wall -std=c++14 -O3 -mcpu=native -ffp-contract=fast -I$EIGEN_INCLUDE_PATH -I./../../include/ rwmh_normal_mean.cpp -o rwmh_normal_mean.out -L./../.. -lmcmc
Check the /examples
directory for additional examples, and https://mcmclib.readthedocs.io/en/latest/ for a detailed description of each algorithm.
Automatic Differentiation
By combining Eigen with the Autodiff library, MCMCLib provides experimental support for automatic differentiation.
The example below uses forward-mode automatic differentiation to compute the gradient of the Gaussian likelihood function, and the HMC algorithm to sample from the posterior distribution of the mean and variance parameters.
#define MCMC_ENABLE_EIGEN_WRAPPERS
#include "mcmc.hpp"
#include <autodiff/forward/real.hpp>
#include <autodiff/forward/real/eigen.hpp>
inline
Eigen::VectorXd
eigen_randn_colvec(size_t nr)
{
static std::mt19937 gen{ std::random_device{}() };
static std::normal_distribution<> dist;
return Eigen::VectorXd{ nr }.unaryExpr([&](double x) { (void)(x); return dist(gen); });
}
struct norm_data_t {
Eigen::VectorXd x;
};
double ll_dens(const Eigen::VectorXd& vals_inp, Eigen::VectorXd* grad_out, void* ll_data)
{
const double pi = 3.14159265358979;
norm_data_t* dta = reinterpret_cast<norm_data_t*>(ll_data);
const Eigen::VectorXd x = dta->x;
//
autodiff::real u;
autodiff::ArrayXreal xd = vals_inp.eval();
std::function<autodiff::real (const autodiff::ArrayXreal& vals_inp)> normal_dens_log_form \
= [x, pi](const autodiff::ArrayXreal& vals_inp) -> autodiff::real
{
autodiff::real mu = vals_inp(0);
autodiff::real sigma = vals_inp(1);
return - x.size() * (0.5 * std::log(2*pi) + autodiff::detail::log(sigma)) - (x.array() - mu).pow(2).sum() / (2*sigma*sigma);
};
//
if (grad_out) {
Eigen::VectorXd grad_tmp = autodiff::gradient(normal_dens_log_form, autodiff::wrt(xd), autodiff::at(xd), u);
*grad_out = grad_tmp;
} else {
u = normal_dens_log_form(xd);
}
//
return u.val();
}
double log_target_dens(const Eigen::VectorXd& vals_inp, Eigen::VectorXd* grad_out, void* ll_data)
{
return ll_dens(vals_inp,grad_out,ll_data);
}
int main()
{
const int n_data = 1000;
const double mu = 2.0;
const double sigma = 2.0;
norm_data_t dta;
Eigen::VectorXd x_dta = mu + sigma * eigen_randn_colvec(n_data).array();
dta.x = x_dta;
Eigen::VectorXd initial_val(2);
initial_val(0) = mu + 1; // mu
initial_val(1) = sigma + 1; // sigma
mcmc::algo_settings_t settings;
settings.hmc_settings.step_size = 0.08;
settings.hmc_settings.n_burnin_draws = 2000;
settings.hmc_settings.n_keep_draws = 2000;
//
Eigen::MatrixXd draws_out;
mcmc::hmc(initial_val, log_target_dens, draws_out, &dta, settings);
//
std::cout << "hmc mean:\n" << draws_out.colwise().mean() << std::endl;
std::cout << "acceptance rate: " << static_cast<double>(settings.hmc_settings.n_accept_draws) / settings.hmc_settings.n_keep_draws << std::endl;
//
return 0;
}
Compile with:
g++ -Wall -std=c++17 -O3 -march=native -ffp-contract=fast -I/path/to/eigen -I/path/to/autodiff -I/path/to/mcmc/include hmc_normal_autodiff.cpp -o hmc_normal_autodiff.cpp -L/path/to/mcmc/lib -lmcmc
See the documentation for more details on this topic.
Author
Keith O'Hara
License
Apache Version 2