• Stars
    star
    242
  • Rank 167,048 (Top 4 %)
  • Language
    Scala
  • License
    Other
  • Created over 12 years ago
  • Updated almost 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Ollie is a open information extractor that uses bootstrapped dependency paths.

Ollie

Ollie is a program that automatically identifies and extracts binary relationships from English sentences. Ollie is designed for Web-scale information extraction, where target relations are not specified in advance.

Ollie is our second-generation information extraction system . Whereas ReVerb operates on flat sequences of tokens, Ollie works with the tree-like (graph with only small cycles) representation using Stanford's compression of the dependencies. This allows Ollie to capture expression that ReVerb misses, such as long-range relations.

Ollie also captures context that modifies a binary relation. Presently Ollie handles attribution (He said/she believes) and enabling conditions (if X then).

Quick Start

Docker

You can now run Ollie with a single Docker command.

docker run -it schmmd/ollie:latest

To configure Ollie, you can drop into a bash shell with docker run -it schmmd/ollie:latest /bin/bash and run Ollie from the command line.

Local Machine

If you want to run Ollie on a small amount of text without modifying the source code, you can use an executable file that can be run from the command line. Please note that Ollie was built using Scala 2.9 and so it requires Java 7. Follow these steps to get started:

  1. Download the latest Ollie binary from http://knowitall.cs.washington.edu/ollie/ollie-app-latest.jar.

  2. Download the linear English MaltParser model (engmalt.linear-1.7.mco) from http://www.maltparser.org/mco/english_parser/engmalt.html and place it in the same directory as Ollie.

  3. Run java -Xmx512m -jar ollie-app-latest.jar yourfile.txt. The input file should contain one sentence per line unless --split is specified. Omit the input file for an interactive console.

Examples

Enabling Condition

An enabling condition is a condition that needs to be met for the extraction to be true. Certain words demark an enabling condition, such as "if" and "when". Ollie captures enabling conditions if they are present.

sentence: If I slept past noon, I'd be late for work.
extraction: (I; 'd be late for; work)[enabler=If I slept past noon]

Attribution

An attribution clause specifies an entity that asserted an extraction and a verb that specifies the expression. Ollie captures attributions if they are present.

sentence: Some people say Barack Obama was not born in the United States.
extraction: (Barack Obama; was not born in; the United States)[attrib=Some people say]

sentence: Early astronomers believe that the earth is the center of the universe.
extraction: (the earth; is the center of; the universe)[attrib=Early astronomers believe]

Relational noun

Some relations are expressed without verbs. Ollie can capture these as well as verb-mediated relations.

sentence: Microsoft co-founder Bill Gates spoke at a conference on Monday.
extraction: (Bill Gates; be co-founder of; Microsoft)

N-ary extractions

Often times similar relations will specify different aspects of the same event. Since Ollie captures long-range relations it can capture N-ary extractions by collapsing extractions where the relation phrase only differs by the preposition.

sentence: I learned that the 2012 Sasquatch music festival is scheduled for May 25th until May 28th.
extraction: (the 2012 Sasquatch music festival; is scheduled for; May 25th)
extraction: (the 2012 Sasquatch music festival; is scheduled until; May 28th)
nary: (the 2012 Sasquatch music festival; is scheduled; [for May 25th; to May 28th])

Building

Building Ollie from source requires Apache Maven (http://maven.apache.org). First, clone or download the Ollie source from GitHub. Run this command in the top-level source folder to download the required dependencies, compile, and create a single jar file.

mvn clean package

The compiled class files will be put in the base directory. The single executable jar file will be written to ollie-app-VERSION.jar where VERSION is the version number.

Command Line Interface

Once you have built Ollie, you can run it from the command line.

java -Xmx512m -jar ollie-app-VERSION.jar yourfile.txt

Omit the input file for an interactive console.

Ollie takes sentences, one-per-line as input or splits text into sentences if --split is specified. Run Ollie with --usage to see full usage.

The Ollie command line tool has a few output formats. The output format is specified by --output-format and a valid format:

  1. The interactive format that is meant to be easily human readable.
  2. The tabbed format is mean to be easily parsable. A header will be output as the first row to label the columns.
  3. tabbedsingle is similar to tabbed but the extraction is output as (arg1; relation; arg2) in a single column.
  4. The serialized is meant to be fully deserialized into an OllieExtractionInstance class.

Graphical Interface

Ollie works ontop of a subcomponent called OpenParse. The distinction is largely technical; OpenParse does not handle attribution and enabling condition and uses a coarser confidence metric. You can use a GUI application to visualize the OpenParse extractions in a parse tree. To use it, you will need to have graphviz installed. You can run the GUI with:

java -Xms512M -Xmx1g -cp ollie-app-VERSION.jar edu.knowitall.openparse.OpenParseGui

By default, this application will look for graphviz's dot program at /usr/bin/dot. You can specify a location with the --graphviz parameter.

You can try out your own models with Options->Load Model.... To see an example model, look at openparse.model in src/main/resources. Your model may have one or more patterns in it. If you want to see pattern matches (without node expansion) instead of triple extractions, you can choose to show the raw match with Options->Raw Matches. This will allow you to use patterns that do not capture an arg1, rel, and arg2.

Parsers

Ollie is packaged to use Malt Parser, one of the fastest dependency parsers available. You will need the model file (engmalt.linear-1.7.mco) in the directory the application is run from or you will need to specify its location with the --malt-model parameter. Malt Parser models are available online.

http://www.maltparser.org/mco/english_parser/engmalt.html

Ollie works with any other parser in the nlptools project. For example, it is easy to swap out Malt for Stanford's parser. Stanford's parser is not a part of the Ollie distribution by default because of licensing conflicts, but the Stanford parser was used as the execution parser for the results in the paper. Malt Parser was used to bootstrap the patterns. We are interested in Clear parser as an alternative, but it's not a trivial change because Clear uses a slightly different dependency representation.

Using Eclipse

To modify the Ollie source code in Eclipse, use the M2Eclipse plugin along with ScalaIDE. You can then import the project using the following.

File > Import > Existing Maven Projects

Including Ollie as a Dependency

Add the following as a Maven dependency.

<groupId>edu.washington.cs.knowitall.ollie</groupId>
<artifactId>ollie-core_2.9.2</artifactId>
<version>[1.0.0, )</version>

The best way to find the latest version is to browse Maven Central.

ollie-core does not include a way to parse sentences. You will need to use a parser supplied by the nlptools project. The source for for ollie-app is an excellent example of a project using ollie-core as a dependency. ollie-app supplies a parser from nlptools.

There is an example project that uses Ollie in the example folder of the source distribution.

Training the Confidence Function

While Ollie comes with a trained confidence function, it is possible to retrain the confidence function. First, you need to run Ollie over a set of sentences and store the output in the serialized format.

echo "Michael rolled down the hill." | java -jar ollie-app-1.0.0-SNAPSHOT.jar --serialized --output toannotate.tsv

Next you need to annotate the extractions. Modify the output file and change the first column to a binary annotation--1 for correct and 0 for wrong. Your final file will look similar to ollie/data/training.tsv. Now run the logistic regression trainer.

java -cp ollie-app-1.0.0-SNAPSHOT.jar edu.washington.cs.knowitall.ollie.confidence.train.TrainOllieConfidence toannotate.tsv

Concurrency

When operating at web scale, parallelism is essential. While the base Ollie extractor is immutable and thread safe, the parser may not be thread safe. I do not know whether Malt parser is thread safe.

FAQ

  1. How fast is Ollie?

    You should really benchmark Ollie yourself, but on my computer (a new computer in 2011), Ollie processed 5000 high-quality web sentences in 56 seconds, or 89 sentences per second, in a single thread. Ollie is easily parallelizable and the Ollie extractor itself is threadsafe (see Concurrency section).

Contact

To contact the UW about Ollie, email [email protected].

Citing Ollie

If you use Ollie in your academic work, please cite Ollie with the following BibTeX citation:

@inproceedings{ollie-emnlp12,
  author = {Mausam and Michael Schmitz and Robert Bart and Stephen Soderland and Oren Etzioni},
  title = {Open Language Learning for Information Extraction},
  booktitle = {Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CONLL)},
  year = {2012}
}

More Repositories

1

reverb

Web-Scale Open Information Extraction
Java
541
star
2

openie

Quality information extraction at web scale.
Scala
454
star
3

nlptools

A toolkit that wraps various natural language processing implementations behind a common interface.
Scala
101
star
4

openregex

An efficient and flexible token-based regular expression language and engine.
Java
74
star
5

yelp-dataset-challenge

Information extraction over restaurant reviews for the Yelp Dataset Challenge
Python
28
star
6

chunkedextractor

Extractors whose input is a chunked sentence. Includes Relnoun, Nesty, and a scala interface for ReVerb.
Scala
28
star
7

implie

Implicit relation extractor using a natural language model.
Scala
25
star
8

morpha

Morpha lex stemmer converted using jflex.
Java
22
star
9

srlie

The SRL-based Open IE extractor. A principal component of Open IE 4.0.
Scala
19
star
10

common-scala

The UW's library for common routines in scala.
Scala
13
star
11

taggers

Easily identify and label sentence intervals using various taggers.
Scala
11
star
12

DocOpenIE

Document-level information extraction.
Scala
7
star
13

triplestore-qa

Question answering over a triplestore
Scala
7
star
14

openie-demo

The main Open IE demo.
CSS
6
star
15

MultirFramework

Java
5
star
16

Tac2013EntityLinking

Scala
4
star
17

nlpweb

A demonstration of various NLP tools.
CSS
4
star
18

documentextractor

A web application to process documents into extractions and annotate those extractions.
CSS
4
star
19

common-java

Java
3
star
20

hadoop-clueweb

A collection of Hadoop jobs to process ClueWeb into sentences.
Scala
3
star
21

openregex-scala

A scala wrapper for OpenRegex.
Scala
2
star
22

relgrams

Relgrams -- Tool for computing relational co-occurrences.
Scala
2
star
23

openie-backend

Backend code for the Open IE demo (largely deprecated after Rob's efforts to move Open IE to Paralex).
Scala
2
star
24

UIUCWikifier2013Wrapper

Java
2
star
25

extraction-demo

A project for creating extractions from a list of sentences and providing a demo for exploring Open IE extractions. The primary purpose for this project is for exploration of Open IE in the IARPA project.
CSS
2
star
26

MultirExtractor

Java
1
star
27

clueweb-hadoop

1
star
28

kbp-MultiR

Java
1
star
29

KBP2014-Slotfilling-Multir

Scala
1
star
30

tac2013

locationHelper
Scala
1
star