• Stars
    star
    255
  • Rank 159,729 (Top 4 %)
  • Language
    Jupyter Notebook
  • Created over 7 years ago
  • Updated almost 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Transfer learning for music classification and regression tasks

transfer_learning_music

Repo for paper "Transfer learning for music classification and regression tasks" by Keunwoo Choi et al.

diagram results

Mode 1/2. To use the pre-trained convnet feature extractor

For your own music/audio-related work.

Prerequisites (Same as mode 2 except datasets)

$ pip install theano==0.9
$ pip install keras==1.2.2
$ git clone https://github.com/keunwoochoi/kapre.git
$ cd kapre
$ git checkout a3bde3e
$ python setup.py install

Usage

$ python easy_feature_extraction.py audio_paths.txt some/path/features.npy

where audio_path.txt is line-by-line audio paths and some/path/features.npy is the path to save the result.

E.g., audio_path.txt :

blah/a.mp3
blahblah/234.wav
some/other.c.mp3

Then load the .npy file. The features are size of (num_songs, 160).

Mode 2/2. To reproduce the paper

Prerequisites

$ git clone https://github.com/keunwoochoi/kapre.git
$ cd kapre
$ git checkout a3bde3e
$ python setup.py install
  • Optionally, Sckikt learn, Pandas, Numpy,.. for your convenience.

Usage

  • 0. main_prepare_many_datasets.ipynb: prepare dataset, pre-processing
  • 1. feature extraction for 6 tasks.ipynb: feature extraction (MFCC and convnet features)
  • 2_main_knn_svm_transfer: Do SVM
  • 3. knn and svm (with AveragePooling) results plots: Plot results

Appendix

Links

Citation:

@inproceedings{choi2017transfer,
  title={Transfer learning for music classification and regression tasks},
  author={Choi, Keunwoo and Fazekas, George and Sandler, Mark and Cho, Kyunghyun},
  booktitle={The 18th International Society of Music Information Retrieval (ISMIR) Conference 2017, Suzhou, China},
  year={2017},
  organization={International Society of Music Information Retrieval}
}

More Repositories

1

kapre

kapre: Keras Audio Preprocessors
Python
922
star
2

music-auto_tagging-keras

Music auto-tagging models and trained weights in keras/theano
Python
614
star
3

dl4mir

Deep learning for MIR
Jupyter Notebook
236
star
4

torchaudio-contrib

A test bed for updates and new features | pytorch/audio
Python
169
star
5

lstm_real_book

LSTM source code to generate jazz chord progressions
Python
130
star
6

DrummerNet

Supplementary material of "Deep Unsupervised Drum Transcription", ISMIR 2019
TeX
123
star
7

LSTMetallica

LSTM to generate drum tracks based on Metallica's midi drum tracks
Python
107
star
8

ismir-2019-posters

76
star
9

residual_block_keras

Residual network block in Keras
Python
72
star
10

magnatagatune-list

List of automatic music tagging research articles that are evaluated against MagnaTagATune Dataset
64
star
11

keras_STFT_layer

Do STFT in Keras
Jupyter Notebook
63
star
12

keras_callbacks_example

Keras callback example
Python
56
star
13

MSD_split_for_tagging

Python
52
star
14

Auralisation

Auralisation of learned features in CNN (for audio)
Python
42
star
15

awesome-audio-study-materials-for-korean

39
star
16

music4all_contrib

Jupyter Notebook
32
star
17

data-science-handbook

데이터 κ³Όν•™ ν•Έλ“œλΆ
Jupyter Notebook
18
star
18

perceptual_weighting

Loudness compensation for time-frequency representation
Python
17
star
19

ismir2016-ldb-audio-captioning-model-keras

Audio captioning RNN model in Keras
Python
15
star
20

keras_cropping_layer

Keras cropping layer implementation
Python
13
star
21

icassp_2017

12
star
22

tokenizer-vs-tokenizer

11
star
23

UrbanSound8K-preprocessing

Jupyter Notebook
11
star
24

frequency-aware-conv2d-layer-pytorch

Python
9
star
25

awesome-conscious-AIs

8
star
26

machine_learning_eng2kor

Machine learning eng2kor word dictionary
4
star
27

openmic-2018-tfrecord

Python
3
star
28

FMA_convnet_features

FMA convnet features
3
star
29

magnatagatune

yeah
C++
3
star
30

DLR

Python
2
star
31

MSD-to-MB-mapping

Million Song Dataset to MusicBrainz (AcousticBrainz) mapping files
1
star
32

compact_cnn

a landing page for compact cnn
1
star
33

embedding

C++
1
star