• Stars
    star
    546
  • Rank 81,396 (Top 2 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created over 9 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python decoder for Mode S and ADS-B signals

The Python ADS-B/Mode-S Decoder

PyModeS is a Python library designed to decode Mode-S (including ADS-B) messages. It can be imported to your python project or used as a standalone tool to view and save live traffic data.

This is a project created by Junzi Sun, who works at TU Delft, Aerospace Engineering Faculty, CNS/ATM research group. It is supported by many contributors from different institutions.

Introduction

pyModeS supports the decoding of following types of messages:

  • DF4 / DF20: Altitude code
  • DF5 / DF21: Identity code (squawk code)
  • DF17 / DF18: Automatic Dependent Surveillance-Broadcast (ADS-B)
    • TC=1-4 / BDS 0,8: Aircraft identification and category
    • TC=5-8 / BDS 0,6: Surface position
    • TC=9-18 / BDS 0,5: Airborne position
    • TC=19 / BDS 0,9: Airborne velocity
    • TC=28 / BDS 6,1: Airborne status [to be implemented]
    • TC=29 / BDS 6,2: Target state and status information [to be implemented]
    • TC=31 / BDS 6,5: Aircraft operational status [to be implemented]
  • DF20 / DF21: Mode-S Comm-B messages
    • BDS 1,0: Data link capability report
    • BDS 1,7: Common usage GICB capability report
    • BDS 2,0: Aircraft identification
    • BDS 3,0: ACAS active resolution advisory
    • BDS 4,0: Selected vertical intention
    • BDS 4,4: Meteorological routine air report (experimental)
    • BDS 4,5: Meteorological hazard report (experimental)
    • BDS 5,0: Track and turn report
    • BDS 6,0: Heading and speed report

If you find this project useful for your research, please considering cite this tool as:

@article{sun2019pymodes,
    author={J. {Sun} and H. {V\^u} and J. {Ellerbroek} and J. M. {Hoekstra}},
    journal={IEEE Transactions on Intelligent Transportation Systems},
    title={pyModeS: Decoding Mode-S Surveillance Data for Open Air Transportation Research},
    year={2019},
    doi={10.1109/TITS.2019.2914770},
    ISSN={1524-9050},
}

Resources

Check out and contribute to this open-source project at: https://github.com/junzis/pyModeS

Detailed manual on Mode-S decoding is published at: https://mode-s.org/decode

The API documentation of pyModeS is at: https://mode-s.org/api

Basic installation

Installation examples:

# stable version
pip install pyModeS

# conda (compiled) version
conda install -c conda-forge pymodes

# development version
pip install git+https://github.com/junzis/pyModeS

Dependencies numpy, and pyzmq are installed automatically during previous installations processes.

If you need to connect pyModeS to a RTL-SDR receiver, pyrtlsdr need to be installed manually:

pip install pyrtlsdr

Advanced installation (using c modules)

If you want to make use of the (faster) c module, install pyModeS as follows:

# conda (compiled) version
conda install -c conda-forge pymodes

# stable version
pip install pyModeS

# development version
git clone https://github.com/junzis/pyModeS
cd pyModeS
poetry install -E rtlsdr

View live traffic (modeslive)

General usage:

$ modeslive [-h] --source SOURCE [--connect SERVER PORT DATAYPE]
            [--latlon LAT LON] [--show-uncertainty] [--dumpto DUMPTO]

arguments:
 -h, --help            show this help message and exit
 --source SOURCE       Choose data source, "rtlsdr" or "net"
 --connect SERVER PORT DATATYPE
                       Define server, port and data type. Supported data
                       types are: ['raw', 'beast', 'skysense']
 --latlon LAT LON      Receiver latitude and longitude, needed for the surface
                       position, default none
 --show-uncertainty    Display uncertainty values, default off
 --dumpto DUMPTO       Folder to dump decoded output, default none

Live with RTL-SDR

If you have an RTL-SDR receiver connected to your computer, you can use the rtlsdr source switch (require pyrtlsdr package), with command:

$ modeslive --source rtlsdr

Live with network data

If you want to connect to a TCP server that broadcast raw data. use can use net source switch, for example:

$ modeslive --source net --connect localhost 30002 raw
$ modeslive --source net --connect 127.0.0.1 30005 beast

Example screenshot:

https://github.com/junzis/pyModeS/raw/master/doc/modeslive-screenshot.png

Use the library

import pyModeS as pms

Common functions

pms.df(msg)                 # Downlink Format
pms.icao(msg)               # Infer the ICAO address from the message
pms.crc(msg, encode=False)  # Perform CRC or generate parity bit

pms.hex2bin(str)      # Convert hexadecimal string to binary string
pms.bin2int(str)      # Convert binary string to integer
pms.hex2int(str)      # Convert hexadecimal string to integer
pms.gray2int(str)     # Convert grey code to integer

Core functions for ADS-B decoding

pms.adsb.icao(msg)
pms.adsb.typecode(msg)

# Typecode 1-4
pms.adsb.callsign(msg)

# Typecode 5-8 (surface), 9-18 (airborne, barometric height), and 20-22 (airborne, GNSS height)
pms.adsb.position(msg_even, msg_odd, t_even, t_odd, lat_ref=None, lon_ref=None)
pms.adsb.airborne_position(msg_even, msg_odd, t_even, t_odd)
pms.adsb.surface_position(msg_even, msg_odd, t_even, t_odd, lat_ref, lon_ref)
pms.adsb.surface_velocity(msg)

pms.adsb.position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.airborne_position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.surface_position_with_ref(msg, lat_ref, lon_ref)

pms.adsb.altitude(msg)

# Typecode: 19
pms.adsb.velocity(msg)          # Handles both surface & airborne messages
pms.adsb.speed_heading(msg)     # Handles both surface & airborne messages
pms.adsb.airborne_velocity(msg)

Note: When you have a fix position of the aircraft, it is convenient to use position_with_ref() method to decode with only one position message (either odd or even). This works with both airborne and surface position messages. But the reference position shall be within 180NM (airborne) or 45NM (surface) of the true position.

Decode altitude replies in DF4 / DF20

pms.common.altcode(msg)   # Downlink format must be 4 or 20

Decode identity replies in DF5 / DF21

pms.common.idcode(msg)   # Downlink format must be 5 or 21

Common Mode-S functions

pms.icao(msg)           # Infer the ICAO address from the message
pms.bds.infer(msg)      # Infer the Modes-S BDS register

# Check if BDS is 5,0 or 6,0, give reference speed, track, altitude (from ADS-B)
pms.bds.is50or60(msg, spd_ref, trk_ref, alt_ref)

# Check each BDS explicitly
pms.bds.bds10.is10(msg)
pms.bds.bds17.is17(msg)
pms.bds.bds20.is20(msg)
pms.bds.bds30.is30(msg)
pms.bds.bds40.is40(msg)
pms.bds.bds44.is44(msg)
pms.bds.bds50.is50(msg)
pms.bds.bds60.is60(msg)

Mode-S Elementary Surveillance (ELS)

pms.commb.ovc10(msg)      # Overlay capability, BDS 1,0
pms.commb.cap17(msg)      # GICB capability, BDS 1,7
pms.commb.cs20(msg)       # Callsign, BDS 2,0

Mode-S Enhanced Surveillance (EHS)

# BDS 4,0
pms.commb.selalt40mcp(msg)   # MCP/FCU selected altitude (ft)
pms.commb.selalt40fms(msg)   # FMS selected altitude (ft)
pms.commb.p40baro(msg)    # Barometric pressure (mb)

# BDS 5,0
pms.commb.roll50(msg)     # Roll angle (deg)
pms.commb.trk50(msg)      # True track angle (deg)
pms.commb.gs50(msg)       # Ground speed (kt)
pms.commb.rtrk50(msg)     # Track angle rate (deg/sec)
pms.commb.tas50(msg)      # True airspeed (kt)

# BDS 6,0
pms.commb.hdg60(msg)      # Magnetic heading (deg)
pms.commb.ias60(msg)      # Indicated airspeed (kt)
pms.commb.mach60(msg)     # Mach number (-)
pms.commb.vr60baro(msg)   # Barometric altitude rate (ft/min)
pms.commb.vr60ins(msg)    # Inertial vertical speed (ft/min)

Meteorological reports [Experimental]

To identify BDS 4,4 and 4,5 codes, you must set mrar argument to True in the infer() function:

pms.bds.infer(msg. mrar=True)

Once the correct MRAR and MHR messages are identified, decode them as follows:

Meteorological routine air report (MRAR)

# BDS 4,4
pms.commb.wind44(msg)     # Wind speed (kt) and direction (true) (deg)
pms.commb.temp44(msg)     # Static air temperature (C)
pms.commb.p44(msg)        # Average static pressure (hPa)
pms.commb.hum44(msg)      # Humidity (%)

Meteorological hazard air report (MHR)

# BDS 4,5
pms.commb.turb45(msg)     # Turbulence level (0-3)
pms.commb.ws45(msg)       # Wind shear level (0-3)
pms.commb.mb45(msg)       # Microburst level (0-3)
pms.commb.ic45(msg)       # Icing level (0-3)
pms.commb.wv45(msg)       # Wake vortex level (0-3)
pms.commb.temp45(msg)     # Static air temperature (C)
pms.commb.p45(msg)        # Average static pressure (hPa)
pms.commb.rh45(msg)       # Radio height (ft)

Customize the streaming module

The TCP client module from pyModeS can be re-used to stream and process Mode-S data as you like. You need to re-implement the handle_messages() function from the TcpClient class to write your own logic to handle the messages.

Here is an example:

import pyModeS as pms
from pyModeS.extra.tcpclient import TcpClient

# define your custom class by extending the TcpClient
#   - implement your handle_messages() methods
class ADSBClient(TcpClient):
    def __init__(self, host, port, rawtype):
        super(ADSBClient, self).__init__(host, port, rawtype)

    def handle_messages(self, messages):
        for msg, ts in messages:
            if len(msg) != 28:  # wrong data length
                continue

            df = pms.df(msg)

            if df != 17:  # not ADSB
                continue

            if pms.crc(msg) !=0:  # CRC fail
                continue

            icao = pms.adsb.icao(msg)
            tc = pms.adsb.typecode(msg)

            # TODO: write you magic code here
            print(ts, icao, tc, msg)

# run new client, change the host, port, and rawtype if needed
client = ADSBClient(host='127.0.0.1', port=30005, rawtype='beast')
client.run()

Unit test

To perform unit tests, pytest must be install first.

Build Cython extensions

$ make ext

Run unit tests

$ make test

Clean build files

$ make clean

More Repositories

1

the-1090mhz-riddle

The book about decoding Mode-S and ADS-B data
TeX
105
star
2

openap

Open Aircraft Performance Model and Python Toolkit
Python
86
star
3

aircraft-db

Query all types of flight identities, such as ICAO address, registration ID, aircraft model, etc.
Python
63
star
4

flight-data-processor

Flight data clustering and flight phase identification
Python
53
star
5

wrap

WRAP: An open-source kinematic aircraft performance model [database]
36
star
6

meteo-particle-model

Weather (wind and temperature) field reconstruction based on meteo-particle model using ADS-B and Mode-S data
Python
29
star
7

pyopensky

The Python interface for OpenSky Impala database with integrated pyModeS decoder
Python
28
star
8

openap-top

Flight trajectory optimizer with non-linear optimal control
Python
21
star
9

atdelay

Air Traffic Delays Prediction Models
Jupyter Notebook
20
star
10

fastmeteo

A super fast libaray to get meteorological data for flights
Jupyter Notebook
13
star
11

contrail-seg

Neural network models for contrail detection and segmentation
Python
9
star
12

sil

Python Client for Mode-s Beast Raw Data
Python
8
star
13

course-regression

Notebooks for CS4305TU Regression Lectures
HTML
7
star
14

acsmc

Aircraft mass estimator based on sequential Monte Carlo method
Python
4
star
15

gicb-db

Common GICB capabilities database for global aircraft
4
star
16

openap-polymer

Super fast Polynomial Model for flight Emission Research
Python
3
star
17

modes-tutorials

A set of tutorials on decoding Mode-S and ADS-B data
Jupyter Notebook
3
star
18

course-pandas

A mini course on pandas
3
star
19

memeit

Using machine learning to read and extract texts from MEMEs
Python
3
star
20

copula

A simple multi-model transport emission analysis framework based on GTFS data
Python
2
star
21

tutorial-icrat24-openap

HTML
1
star
22

pyVDL2

A Python decoder for VDL (VHF Data Link) Mode 2 data
Python
1
star
23

rtnote

A Python based tool for RT transcription
Python
1
star