• Stars
    star
    1,500
  • Rank 31,279 (Top 0.7 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created about 9 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

open-source feature selection repository in python

scikit-feature

Feature selection repository scikit-feature in Python.

scikit-feature is an open-source feature selection repository in Python developed by Data Mining and Machine Learning Lab at Arizona State University. It is built upon one widely used machine learning package scikit-learn and two scientific computing packages Numpy and Scipy. scikit-feature contains around 40 popular feature selection algorithms, including traditional feature selection algorithms and some structural and streaming feature selection algorithms.

It serves as a platform for facilitating feature selection application, research and comparative study. It is designed to share widely used feature selection algorithms developed in the feature selection research, and offer convenience for researchers and practitioners to perform empirical evaluation in developing new feature selection algorithms.

Installing scikit-feature

Prerequisites:

Python 2.7 and Python 3

NumPy

SciPy

Scikit-learn

Steps:

For Linux users, you can install the repository by the following command:

python setup.py install

For Windows users, you can also install the repository by the following command:

setup.py install

Project website

Instructions of using this repository can be found in our project webpage at http://featureselection.asu.edu/

Citation

If you find scikit-feature feature selection reposoitory useful in your research, please consider citing the following paper::

@article{li2018feature,
title={Feature selection: A data perspective},
author={Li, Jundong and Cheng, Kewei and Wang, Suhang and Morstatter, Fred and Trevino, Robert P and Tang, Jiliang and Liu, Huan},
journal={ACM Computing Surveys (CSUR)},
volume={50},
number={6},
pages={94},
year={2018},
publisher={ACM}
}

Contact

Jundong Li E-mail: [email protected]