• Stars
    star
    572
  • Rank 77,995 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created about 8 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Kafka-based Job Queue for Python

KQ: Kafka Job Queue for Python

Build CodeQL codecov PyPI version GitHub license Python version

KQ (Kafka Queue) is a lightweight Python library which lets you enqueue and execute jobs asynchronously using Apache Kafka. It uses kafka-python under the hood.

Announcements

  • Support for Python 3.5 will be dropped from KQ version 3.0.0.
  • See releases for latest updates.

Requirements

Installation

Install using pip:

pip install kq

Getting Started

Start your Kafka instance. Example using Docker:

docker run -p 9092:9092 -e ADV_HOST=127.0.0.1 lensesio/fast-data-dev

Define your KQ worker.py module:

import logging

from kafka import KafkaConsumer
from kq import Worker

# Set up logging.
formatter = logging.Formatter("[%(levelname)s] %(message)s")
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger = logging.getLogger("kq.worker")
logger.setLevel(logging.DEBUG)
logger.addHandler(stream_handler)

# Set up a Kafka consumer.
consumer = KafkaConsumer(
    bootstrap_servers="127.0.0.1:9092",
    group_id="group",
    auto_offset_reset="latest"
)

# Set up a worker.
worker = Worker(topic="topic", consumer=consumer)
worker.start()

Start your worker:

python my_worker.py
[INFO] Starting Worker(hosts=127.0.0.1:9092 topic=topic, group=group) ...

Enqueue a function call:

import requests

from kafka import KafkaProducer
from kq import Queue

# Set up a Kafka producer.
producer = KafkaProducer(bootstrap_servers="127.0.0.1:9092")

# Set up a queue.
queue = Queue(topic="topic", producer=producer)

# Enqueue a function call.
job = queue.enqueue(requests.get, "https://google.com")

# You can also specify the job timeout, Kafka message key and partition.
job = queue.using(timeout=5, key=b"foo", partition=0).enqueue(requests.get, "https://google.com")

The worker executes the job in the background:

python my_worker.py
[INFO] Starting Worker(hosts=127.0.0.1:9092, topic=topic, group=group) ...
[INFO] Processing Message(topic=topic, partition=0, offset=0) ...
[INFO] Executing job c7bf2359: requests.api.get("https://www.google.com")
[INFO] Job c7bf2359 returned: <Response [200]>

See the documentation for more information.