• Stars
    star
    123
  • Rank 290,145 (Top 6 %)
  • Language
    R
  • License
    Other
  • Created about 4 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Make Interactive Complex Heatmaps

Make Interactive Complex Heatmaps

R-CMD-check bioc bioc

Screenshot 2021-07-19 at 21 31 14

InteractiveComplexHeatmap is an R package that converts static heatmaps produced from ComplexHeatmap package into an interactive Shiny app only with one extra line of code.

The first example is the default layout of the interactive complex heatmap widget.

The second example demonstrates a DESeq2 result with integrating the package shinydashboard.

Citation

Zuguang Gu, et al., Make Interactive Complex Heatmaps in R, 2021, Bioinformatics, https://doi.org/10.1093/bioinformatics/btab806

Install

InteractiveComplexHeatmap is available on Bioconductor, you can install it by:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("InteractiveComplexHeatmap")

If you want the latest version, install it directly from GitHub:

library(devtools)
install_github("jokergoo/InteractiveComplexHeatmap")

Documentation

There are the following vignettes along with the package:

  1. How to visualize heatmaps interactively
  2. How interactive complex heatmap is implemented
  3. Functions for Shiny app development
  4. Decorations on heatmaps
  5. Interactivate heatmaps indirectly generated by pheatmap(), heatmap.2() and heatmap()
  6. A Shiny app for visualizing DESeq2 results
  7. Implement interactive heatmap from scratch
  8. Share interactive heatmaps to collaborators

A printer-friendly version of the documentation is available at bioRxiv.

Usage

Directly turn heatmaps interactive

With any Heatmap/HeatmapList object, directly send to htShiny() to create a Shiny app for your heatmap(s):

htShiny(ht_list)

If the heatmaps are already drawn, ht_list can be omitted and the last heatmap object is retrieved automatically:

Heatmap(...) + other_heatmaps_or_annotations # or other functions that internally use Heatmap()
htShiny()

Shiny app development

There are also two functions for Shiny app development:

  • InteractiveComplexHeatmapOutput(): for the UI on the client side.
  • makeInteractiveComplexHeatmap(): for processing on the sever side.
library(InteractiveComplexHeatmap)
library(ComplexHeatmap)

ht = Heatmap(m)
ht = draw(ht)

ui = fluidPage(
    InteractiveComplexHeatmapOutput()
)

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht)
}

shiny::shinyApp(ui, server)

You can also put multiple interactive heatmaps widgets in the same Shiny app:

ht1 = Heatmap(m, col = c("white", "blue"))
ht1 = draw(ht1)
ht2 = Heatmap(m, col = c("white", "red"))
ht2 = draw(ht2)

ui = fluidPage(
    h3("The first heatmap"),
    InteractiveComplexHeatmapOutput("ht1"),
    hr(),
    h3("The second heatmap"),
    InteractiveComplexHeatmapOutput("ht2")
)

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht1, "ht1")
    makeInteractiveComplexHeatmap(input, output, session, ht2, "ht2")
}

shiny::shinyApp(ui, server)

Two additional functions to let you dynamically load interactive heatmap widgets:

  • InteractiveComplexHeatmapModal(): The interactive heatmap widget is inserted as a "modal".
  • InteractiveComplexHeatmapWidget(): The interactive heatmap widget is inserted into a place defined by users.
m = matrix(rnorm(100), 10)
ht = Heatmap(m)
    
ui = fluidPage(
    actionButton("show_heatmap", "Generate_heatmap"),
)

server = function(input, output, session) {
    observeEvent(input$show_heatmap, {
        InteractiveComplexHeatmapModal(input, output, session, ht)
    })
}
shiny::shinyApp(ui, server)

# or use InteractiveComplexHeatmapWidget()
ui = fluidPage(
    actionButton("show_heatmap", "Generate_heatmap"),
    htmlOutput("heatmap_output")
)

server = function(input, output, session) {
    observeEvent(input$show_heatmap, {
        InteractiveComplexHeatmapWidget(input, output, session, ht,
            output_id = "heatmap_output")
    })
}
shiny::shinyApp(ui, server)

Interactivate pheatmap(), heatmap.2() and heatmap()

If you directly use these three funtions, simply replace them with ComplexHeatmap::pheatmap(), ComplexHeatmap:::heatmap.2() and ComplexHeatmap:::heatmap(). If the three functions are used indirectly, e.g. a function foo() (maybe from another packages or other people's functions) which internally uses these three heatmap functions, check the vignette "Interactivate indirect use of pheatmap(), heatmap.2() and heatmap()" to find out how.

Live examples

Following lists several live examples of interactive heatmaps. Details can be found in the package vignette.

There are also many other examples provided in the package.

htShinyExample()
There are following examples. Individual example can be run by e.g. htShinyExample(1.1).

──────── 1. Simple examples ─────────────────────────────────────────────────────────
 1.1 A single heatmap with minimal arguments.
 1.2 A single heatmap from a character matrix.
 1.3 A single heatmap with annotations on both rows and columns.
 1.4 A single heatmap where rows and columns are split.
 1.5 A list of two heatmaps.
 1.6 A list of two vertically concatenated heatmaps
 1.7 Use last generated heatmap, an example from cola package.
 1.8 Use last generated heatmap, an app with three interactive heatmaps
 1.9 Demonstrate hover, click and dblclick actions to select cells.
 1.10 Only response to one of click/hover/dblclick/hover events. Please use
      htShinyExample('1.10') to get this example (quote the index, or else
      htShinyExample(1.10) will be treated as the same as htShinyExample(1.1)).
 1.11 Interactive heatmap under compact mode.

──────── 2. On other plots and packages ─────────────────────────────────────────────
 2.1 A density heatmap.
 2.2 An oncoPrint.
 2.3 A UpSet plot.
 2.4 An interactive heatmap from pheatmap().
 2.5 An interactive heatmap from heatmap().
 2.6 An interactive heatmap from heatmap.2().
 2.7 A heatmap produced from tidyHeatmap package.
 2.8 Genome-scale heatmap.
 2.9 A package-dependency heatmap. You can try to control "Fill figure region"
     and "Remove empty rows and columns" in the tools under the sub-heatmap.

──────── 3. Enriched heatmaps ───────────────────────────────────────────────────────
 3.1 A single enriched heatmap.
 3.2 A list of enriched heatmaps.
 3.3 An enriched heatmap with discrete signals.

──────── 4. On public datasets ──────────────────────────────────────────────────────
 4.1 An example from Lewis et al 2019.
 4.2 Visualize cell heterogeneity from single cell RNASeq.
 4.3 Correlations between methylation, expression and other genomic features.

──────── 5. Shiny app development ───────────────────────────────────────────────────
 5.1 A single Shiny app with two interactive heatmap widgets.
 5.2 Self-define the output. The selected sub-matrix is shown as a text table.
 5.3 Self-define the output. Additional annotations for the selected genes are
     shown.
 5.4 Visualize Gene Ontology similarities. A list of selected GO IDs as well as
     their descriptions are shown in the output.
 5.5 Interactive correlation heatmap. Clicking on the cell generates a
     scatterplot of the two corresponding variables.
 5.6 A heatmap on Jaccard coefficients for a list of genomic regions. Clicking
     on the cell generates a Hilbert curve of how the two sets of genomic
     regions overlap.
 5.7 Implement interactivity from scratch. Instead of generating the whole
     interactive heatmap widget, it only returns the information of rows and
     columns that user have selected on heatmap and users can use this
     information to build their own interactive heatmap widgets.
 5.8 Implement interactivity from scratch. A visualization of 2D density
     distribution. Brushing on heatmap triggers a new 2D density estimation
     only on the subset of data.

──────── 6. Dynamically generate heatmap widget in Shiny app ────────────────────────
 6.1 The matrix with different dimensions is dynamically generated.
 6.2 Reorder by a column that is specified by user.
 6.3 Dynamically generate the widget with InteractiveComplexHeatmapModal(). The
     modal is triggered by an action button.
 6.4 Dynamically select interactive heatmaps. The modal is triggered by radio
     buttons.
 6.5 Dynamically generate the widget. A customized Javascript code is inserted
     after the UI to change the default behavior of the action button.
 6.6 The widget is generated by InteractiveComplexHeatmapWidget() where the UI
     is directly put in the place defined by htmlOutput().
 6.7 The widget is generated by InteractiveComplexHeatmapWidget() and a
     customized Javascript code is inserted after the UI.

──────── 7. Interactive R markdown document ─────────────────────────────────────────
 7.1 Integrate in an interactive R Markdown document.
 7.2 Integrate in an interactive R Markdown document where the heatmap widgets
     are dynamically generated.

──────── 8. Interactivate heatmaps indirectly generated by heatmap()/heatmap.2()/pheatmap()
 8.1 Indirect use of pheatmap().
 8.2 Indirect use of heatmap.2().
 8.3 Two interactive heatmap widgets from indirect use of pheatmap().

──────── 9. Float output UI along with mouse positions ──────────────────────────────
 9.1 A simple example that demonstrates output UI floating with the three
     actions: hover, click and dblclick.
 9.2 Floating self-defined outputs.
 9.3 Floating output only from one event on heatmap, i.e.
     hover/click/dblclick/brush-output.

──────── 10. Work with shinydashboard ────────────────────────────────────────────────
 10.1 Separate the three UI components into three boxes.
 10.2 The three UI components are draggable.
 10.3 A Shiny dashboard with two tabs.
 10.4 Only contain the original heatmap where output floats.
 10.5 A complex dashboard that visualizes a DESeq2 results.

License

MIT @ Zuguang Gu

More Repositories

1

ComplexHeatmap

Make Complex Heatmaps
R
1,276
star
2

circlize

Circular visualization in R
R
956
star
3

EnrichedHeatmap

make enriched heatmap which visualizes the enrichment of genomic signals to specific target regions.
R
185
star
4

spiralize

Visualize data on spirals
R
145
star
5

simplifyEnrichment

Simplify functional enrichment results
R
102
star
6

rGREAT

GREAT Analysis - Functional Enrichment on Genomic Regions
R
81
star
7

cola

A General Framework for Consensus Partitioning
HTML
58
star
8

pkgndep

Analyzing Dependency Heaviness of R Packages
R
45
star
9

HilbertCurve

Visualize genomic data by Hilbert curve
R
40
star
10

gtrellis

Genomic plot in trellis layout
R
39
star
11

circlize_book

Documentation for circlize package
HTML
36
star
12

KeywordsEnrichment

R
30
star
13

bsub

Send R code/R scripts/shell commands to LSF cluster without leaving R
R
24
star
14

ComplexHeatmap-reference

Documentation of ComplexHeatmap package
HTML
22
star
15

ComplexHeatmap_v2_paper_code

R
16
star
16

GetoptLong

Parse command-line arguments and simple variable interpolation
R
16
star
17

GSEAtraining

HTML
14
star
18

circlize_examples

circlize examples
HTML
12
star
19

BioCartaImage

BioCarta pathway images
R
11
star
20

BioMartGOGeneSets

Gene Ontology Gene Sets from BioMart
R
11
star
21

IlluminaHumanMethylationEPICv2anno.20a1.hg38

R
10
star
22

simona

Semantic Similarity in Bio-Ontologies
R
10
star
23

ComplexHeatmap-examples

R
10
star
24

jokergoo

9
star
25

GlobalOptions

Generate function to get or set global options
R
9
star
26

IlluminaHumanMethylationEPICv2manifest

R
8
star
27

Crypt-DNASequence

Encrypt and decrypt strings to DNA Sequences
Perl
8
star
28

Useful_R_packages

8
star
29

ngspipeline

NGS pipeline
Perl
8
star
30

cola_hcp

Hierarchical Consensus Partitioning
5
star
31

jokergoo.github.io

Personal website
HTML
4
star
32

spiralize_vignettes

Vignettes of the spiralize package
HTML
4
star
33

pheatmap2

pretty and parallel heatmap
R
4
star
34

GeneSummary

RefSeq gene summary
R
2
star
35

BioMartGOGeneSets_data

2
star
36

cotools

NGS tools for Conputational Oncology group in DKFZ
R
2
star
37

cola_manuscript

Scripts for the cola manuscript
R
2
star
38

UniProtKeywords

Keywords from the UniProt database
R
2
star
39

supplementary

HTML
2
star
40

simplifyEnrichment_supplementary

Supplementary for simplifyEnrichment manuscript
HTML
2
star
41

cola_examples

Examples of cola analysis
HTML
2
star
42

CePa

Centrality-based pathway enrichment
R
2
star
43

colorRamp2

Generate Color Mapping Functions
R
1
star
44

cola_vignettes

Vignettes of the cola package
HTML
1
star
45

simplifyEnrichment_manuscript

Scripts for the analysis in simplifyEnrichment manuscript
R
1
star
46

gsubeval

Substitute with an Evaluated Expression
R
1
star
47

GTF

Simple class to process GTF data
R
1
star
48

epik

Integrative analysis for epigenomic sequencing data
HTML
1
star
49

simona_supplementary

HTML
1
star
50

List-Vectorize

vectorized functions in perl
Perl
1
star
51

Statistics-Multtest

Control false discovery rate in multiple test
Perl
1
star
52

Microarray-GEO-SOFT

Reading microarray data in SOFT format from GEO database
Perl
1
star
53

top2pct_scientists

top2pct_scientists
R
1
star