• Stars
    star
    275
  • Rank 149,796 (Top 3 %)
  • Language
    Python
  • Created almost 7 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of [1412.6553] and [1511.06530] tensor decomposition methods for convolutional layers.

PyTorch Tensor Decompositions

This is an implementation of Tucker and CP decomposition of convolutional layers. A blog post about this can be found here.

It depends on TensorLy for performing tensor decompositions.

Usage

  • Train a model based on fine tuning VGG16: python main.py --train.

  • There should be a dataset with two categories. One directory for each category. Training data should go into a directory called 'train'. Testing data should go into a directory called 'test'. This can be controlled with the flags --train_path and --test_path.

  • I used the Kaggle Cats/Dogs dataset.

  • The model is then saved into a file called "model".

  • Perform a decomposition: python main.py --decompose This saves the new model into "decomposed_model". It uses the Tucker decomposition by default. To use CP decomposition, pass --cp.

  • Fine tune the decomposed model: python main.py --fine_tune

References

More Repositories

1

pytorch-grad-cam

Advanced AI Explainability for computer vision. Support for CNNs, Vision Transformers, Classification, Object detection, Segmentation, Image similarity and more.
Python
10,410
star
2

keras-dcgan

Keras implementation of Deep Convolutional Generative Adversarial Networks
Python
976
star
3

pytorch-pruning

PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
Python
873
star
4

vit-explain

Explainability for Vision Transformers
Python
791
star
5

keras-grad-cam

An implementation of Grad-CAM with keras
Python
656
star
6

pytorch-explain-black-box

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation
Python
336
star
7

keras-cam

Keras implementation of class activation mapping
Python
335
star
8

pytorch-zssr

PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning
Python
199
star
9

pyfishervector

Python implementation for Image Classification based on GMM dictionaries and fisher vectors.
Python
137
star
10

keras-filter-visualization

Visualizing filters by finding images that maximize their outputs
Python
136
star
11

confidenceinterval

The long missing library for python confidence intervals
Python
125
star
12

keras-steering-angle-visualizations

Visualizations for understanding the regressed wheel steering angle for self driving cars
Python
61
star
13

dlib_facedetector_pytorch

Porting of Dlib's mmod deep learning face detector model to pytorch, and examples of using it for webcam detection, and face haluciniations
Python
32
star
14

saliency-from-backproj

Saliency map generated by back projecting the image histogram on itself, and refinement with Grabcut.
Python
28
star
15

BagOfVisualWords

A simple Matlab implementation of Bag Of Words with SIFT keypoints and HoG descriptors, using VLFeat.
MATLAB
25
star
16

Ambrosio-Tortorelli-Minimizer

Python implementation of minimizing the mumford-shah functional for piecewise smooth image approximation.
Python
25
star
17

CaffeFeaturesExample

Sample code for classifying images into two categories using Caffe features + SVM.
Python
10
star
18

jacobgil.github.io

Personal blog
HTML
9
star
19

TensorFlowFeaturesExample

Extracting features from a tensor flow model for transfer learning
Python
4
star
20

jacobgil

github profile readme
1
star
21

pytorch-gradcam-book

A jupyter-book documentation for the pytorch-gradcam package
1
star