IPython Theano Tutorials
A collection of tutorials in ipynb format that illustrate how to do various things in Theano.
Theano Tutorials
- [Introduction](nbpages/Theano Tutorial Part 1 - Introduction.html)
- [Simple computation](nbpages/Theano Tutorial Part 2 - Simple Computation.html)
- [Functions and Shared Variables](nbpages/Theano Tutorial Part 3 - Functions and Shared Variables.html)
- [Random Variables](nbpages/Theano Tutorial Part 4 - Random Variables.html)
Machine Learning Case Studies
- Model - Logistic Regression with Theano.html
Other Stuff
- Intro to Scikit Data (skdata).html
- Preprocessing - Image Whitening.html
- Notation for Machine Learning.html
- Model - LIF Neurons with Theano.html
PyAutoDiff
- Links to Related Work.html
- Model - Autoencoders and Variations with PyAutodiff.html
- Model - Convnet with PyAutodiff.html
- Model - Linear SVM with PyAutodiff.html
- Model - Multilayer Perceptron with PyAutodiff.html
Installation
Requirements:
- numpy
- scipy
- matplotlib
- IPython (>= 0.13)
- theano
- skdata (provides data sets for machine learning notebooks)
- pyautodiff (required for some notebooks)
Instructions:
Download and unpack this project, and start up an ipython notebook to browse through the tutorials.
git clone https://github.com/jaberg/IPythonTheanoTutorials.git cd IPythonTheanoTutorials sh start_ipython_server.sh
General
- Theano Basics
- Adding a custom Op to Theano
- Numpy/Python function minimization using pyautodiff
Machine Learning:
Supervised Algorithms
- Logistic Regression
- Multilayer Perceptron (MLP)
- Convolutional Network (Convnet)
- Deep Belief Network (DBN)
Unsupervised Algorithms
- Restricted Boltzmann Machine (RBM)
- Autoassociator / Autoencoder (AA)
- Stochasitc Denoising auto associator (SDAA)
- Sparse coding