Card-Ocr
身份证识别OCR, 从身份证图片中自动提取身份证号或者其他字段。
测试图片来自百度搜索的样例图片。
找到的图片比较少,目前都能正确识别。
可用的数据集个人很难找到。
Update for Windows
百度开源了PaddleOcr,识别中文效果很好,编译了一个Windows版本在windows目录。
可以使用CardOcr.exe test0.png 或者CardOcr.py里面的方法调用API。
VisualStudio 2017的源码可以在Source.7z中找到
这种方式加一些逻辑判断可以解析身份证所有字段
112044165412202438 score: 0.972305<br>
公民身份证号码 score: 0.998278<br>
紫禁城敬事房 score: 0.994911<br>
住址北京市东城区景山前街4号 score: 0.981174<br>
出生1654年12月20日 score: 0.992183<br>
民族汉 score: 0.984364<br>
性别男 score: 0.995585<br>
姓名 韦小宝 score: 0.91293<br>
换140M的模型
The predicted text is :
公民身份证号码11204416541220243X score: 0.995691
紫禁城敬事房 score: 0.998352
住址北京市东城区景山前街4号 score: 0.999506
出生1654年12月20日 score: 0.98693
性别男 score: 0.999688
民族汉 score: 0.998341
姓名 score: 0.999685
韦小宝 score: 0.993859
Cost 4.20827s
依赖
- opencv
- pytesseract
- numpy
- matplotlib
流程
- 获取身份证号区域
image-》灰度=》反色=》膨胀=》findContours
- 数字识别
采用tesseract识别,通过trainfont.py获得traineddata.
trainfont使用
- 通过autoBox = 1自动生成box文件
trainFont(fontName, fontPath, fontsize, txt, "eng", 0, autoBox=1)
- 通过jBoxEditor之类的修正box文件
- autoBox = 0 生成traineddata
trainFont(fontName, fontPath, fontsize, txt, "eng", 0, autoBox=0)
识别
获取到身份证区域之后,截取身份证号,灰度化,然后交给pytesseract
pytesseract.image_to_string(image, lang='ocrb', config=tessdata_dir_config)
Keras
除了用tesseract,也可以用机器学习的方式训练识别。这里用了Keras with Tensorflow,"开头两套双卷积池化层,后面接一个 dropout 防过拟合,再接两个全链接层,最后一个 softmax 输出结果。" 使用genData.py生成train数据。 截取身份证号之后的图片分割成18个图片,x-predict.png 用kerastrain.py进行预测识别 训练的结果有时候3和5能分清,有时候分不清。 因为没有支持CUDA的显卡,用的CPU训练。
效果
TODO
- Keras with Tesorflow 来训练识别