• Stars
    star
    113
  • Rank 310,115 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created about 6 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Char-level RNN LSTM text generator📄.

Text Predictor

Character-level RNN (Recurrent Neural Net) LSTM (Long Short-Term Memory) implemented in Python 2.7/TensorFlow in order to predict a text based on a given dataset.


Check out corresponding Medium article:

Text Predictor - Generating Rap Lyrics with Recurrent Neural Networks (LSTMs)📄


Heavily influenced by: http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Idea

  1. Train RNN LSTM on a given dataset (.txt file).
  2. Predict text based on a trained model.

Datasets

kanye - Kanye West's discography (332 KB)
darwin - the complete works of Charles Darwin (20 MB)
reuters - a collection of Reuters headlines (95 MB)
war_and_peace - Leo Tolstoy's War and Peace novel (3 MB)
wikipedia - excerpt from English Wikipedia (48 MB) 
hackernews - a collection of Hackernews headlines (90 KB)
sherlock - a collection of books with Sherlock Holmes (3 MB)
shakespeare - the complete works of William Shakespeare (4 MB)
tagore - short stories by Rabindranath Tagore (2.6 MB)

Feel free to add new datasets. Just create a folder in the ./data directory and put an input.txt file there. Output file along with the training plot will be automatically generated there.

Usage

  1. Clone the repo.
  2. Go to the project's root folder.
  3. Install required packagespip install -r requirements.txt.
  4. python text_predictor.py <dataset>.

Results

Each dataset were trained with the same hyperparameters.

Hyperparameters

BATCH_SIZE = 32
SEQUENCE_LENGTH = 50
LEARNING_RATE = 0.01
DECAY_RATE = 0.97
HIDDEN_LAYER_SIZE = 256
CELLS_SIZE = 2

Sherlock

Iteration: 0

 l Ê°ÂŖI." r, iEgPylXyg
m .iÃŧTÃģ  Ccy2M]zTÃĸ.  sSRMÂŖt Ê5 ’ÎRlT QAlY4Kv"Ê)kPÂŖStr5/lQVu )Pe0/;s8leJ.ÂŖm40tÃŽJÃŽwB`0]ÂŊjyÃģA`BJi'omNxÂŊ2zG iH:gqri76b&g)ie18PMÂŖvA7pßKÃĸNQ6
2 Ãģ?]wgÂŖJo4qCde,’.'G,h &wIUaDuÃŽxq`cqb!kf5yB

Iteration: 500

"Other. I
     unwallfore of his had Sommopilor out he hase you thed I it.

     Book into here, but I told at ht it something do was sack knet afminture-ly. We moke, do oR before drinessast farm. I

Iteration: 1000

some to see me tignaius
 rely."

 There that you'd them were from I
 should not have any take an watchate save now out," said Hodden?"

 "Th, a lott remarks. Showed."

 "A joan?"

Iteration: 100000

Then mention.""Quite
 I gather is stillar in silence was written on the whom I reward an
 details grieves of his east back. The week shook this strength.
 There was no mystery for y

Hackernews

Iteration: 0

 %‘l~E4*1[▲)j&”&T$b’]u:â€Ļ–.2WPUlFLu*)EÂĩk`qbâ‚Ŧ[QoE'aLesP‘U4.q
o_Z2ZPGÊ‘MIn8beXSB=B“dNuyâ€ĻuÂĩ20P8vL”(#
-`H/â‚Ŧâ‚Ŧ:–mÂĩ,g+WU5'^cA=Y–t
z+.I,—6N7?f;7Z)nk
i≠?YsW"iHJ77â‚ŦTy y_eS5pnwN6‘
%oVhkXr[xAlc*Tx’S1–J1LlHN'SuHEsiH

Iteration: 500

 us codhy in N. DeveloLenic pare abouts scax
Microsign Sy Scodwars
Machons Startians: The is abandied
Payer Progroads Procinters
How 1.05)
Trase elacts Macasications Data Freit Paily trigha bourni

Iteration: 1000

 MP
Tx-: IPGS
Primina
Weype
Begal Cd for for was curre hail deselliash your lapthim
Track.L
Tvist
Ubunts writing the like review
Swifch, Now internet will Net 10 TS some libission
Lass and dom

Iteration: 100000

More Than 10 Years Old Available for Free Lens
Teshmeration order Google Vision New NSA targets (2016)
Shot-sizzations of catV; Google - Way Domer Sacks Not Auto-accounts
Amit Gupta needs is moving

Shakespeare

Iteration: 0

TfzVRzdYlDehaDHIhzEiZ&,3knZtHJD]kBOFCpWH.wkWCDVHAK;JcoOMpHJtVNvpcrRSZ,hccUNQ EyG -kpEuvR;MW[JWm;EWv]Au!]EIriywVeGYdljvLkoFMRdikQV:AyoSij.M.;R'lK
vdtnVkxtzL!'qtW$emHfStGUOoK;LJ h
LSyL ?P$KET Z?muR$reIB

Iteration: 500

ticlother them his steaks? whom father-ple plaise't!

HORATIO:

GLOILUS:
Le wime heast,
'Tind soul a bear if thy Gulithes? Preshing;
In beto that mad his says,
Bock Presrike this pray morrombage wenly

Iteration: 1000

HENI:
If which fout in must likest part sors and merr'd?
E sin even and mel full and gooder?

BRUTUS:
Heno Egison to a puenbiloot vieter.

DROMIO OF SYRACUSE:
That is
never standshruced meledder morng

Iteration: 100000

Be feast, tent?

LYSANDER:
And thou love so kiss, to dipate.

All Cornasiers of Atheniansiage are to my sake; but where in end.

APEMANTUS:
Did such a pays. Go, we'll proof.

BERTRAM:
I am reason'dst 

War and Peace

Iteration: 0

oeLÃĒQ8r2),*FV00KrjīģŋF':=BEYGÃĒWīģŋf1
d'qwAd,X,m;à8)j9V)ExSRaox!l(=3ÊtQäsHOlUZ
YgDFI/mpF
JīģŋP.A7W)5bqN,iC àAiiGp, Rīģŋk-v1Qm:9ZoX*qDJwq,BW!:59tNv?ÃĒR"aEīģŋ1M;snov=:rlK *oFxK2mL,6V5brīģŋQ9LN*LwXGe2dpo3C?mx=i)rYr=f9

Iteration: 500

un-
more-alre depiw.

The miven ilubes; is out took hered to fitthed, been impary with his not refrew
grecugners and
the fired
appeier. On; was expring. Gche wast.


Himpery
at it of been th

Iteration: 1000

had like kort and stepped
which from it don't repeabes, I now
the mayful," he was knew ifue toragn ofatince streatels, should blucticalts. Peterning letter, they his voice went the ninding
sonison 

Iteration: 100000

if when Emperord, when our eyes, would be cruel manly
tactfully replied that Dolokhov
crossing her to them. He looked his face in snow face, but sound at closely deigning dogron (for Germans: "We le

Darwin

Iteration: 0

W⅝[—¤SÊÂŊ,°RÃĄ{Ãē⅛ιW‘œΠ┘NfnīŋŊÃĄĪ‡Rœ|NE~{A┐!àÎŧÂŖÎŧvk¤⅜%àΚW⅜,—E.lJW⅓VQÎąÃ‰Il—
ÃĄÂšâ€˛(œM⅜sOΠ¹┘+Ãļô,vt(ÃĢ†XYÅ“Îą^aĪ†IyôdCAΚ8⅞”Âŧ┐PÃŧ+wœ[N)3⅞(Ī‚ÃœZçàôeĪ†e⅞–bz⅝dÎĩ5É<6D;â€ĻT|QĪ‡â€Ļo,z %&T′x=“ΧÂÂŖ×ΚD&“BÃŽÂˇâ€Ļ*—ÎŊKt1dHaÚuÈ;w*[┘}§Uï(ržrĪ‰&œ”–šC

Iteration: 500

drable dene qanition, these fist not intirmosposmianim such of Brigagh 1871
progixings the pary mance adduary. The litter mame is for the
amber not notnot the digracke.  If a amy inter of sindenly u

Iteration: 1000

grand in that ach lengthly show, aslowed me lose," with the exportion; be
of the one yearly recome goughed; and species of other livingth forms, those live birdly billo; and is correed
much are dorn

Iteration: 100000

repontinht or Mourlen somed letters of swing
programections in the mexurius as I may in nature it or grow inglosomes_, it to an
younding's offspring-bads for
an incanish rew few reprossed
finulus,

Kanye

Iteration: 0

9hu71JQ)eA"oqwrAAUwG5Wv7rvM60[*$Y!:1v*8tbkB+k 8IGn)QWv8NR.Spi3BtK[VteRer1GQ,it"kD?XVel3lNuN+G//rI' Sl?ssm
 NbH # Yk2uY"fmSVFah(B]uYZv+2]nsMX(qX9s+Rn+YAM.y/2 Hp9a,ZQOu,dM3.;im$Jca4E6(HS'D
[itYYQG#(gahU(gGoFYi)ucubL3 #iU32 8rdwIG7HJYSpDG*j,5
4phPY'SqiZMpVH-[KEkUjNFyIC#AInX
ys0sw8&IaNC1mYSs$*lW#6e,X(aJDgtx"!u-*N6J(N&Awk7X3P0nWvx)oJLVbWncCS
] P2wQTKTtSXrK9pjR0x5bcwU$ KA7"y+ :0:?wd(BOX1:,LICy]-v/)Y5K(G.Sa qP1vf(LXUDe4jqU3a3s$!cxVv(TO#yRoiXD#ZXw0ny09lu;gFaIqCiyEB)YhP,P
#G$T/].X3m]b9fc
hgsn.QG2WIZ3JS#I

Iteration: 1000

am our 200 shought 2 and but
One we -fuckister do fresh smandles
Juco pick with to sont party agmagle
Then I no meant he don't ganiscimes mad is so cametie want
What
Mama sumin' find Abortsimes, man
You's partystend to heed)
Never)
Whats what a gonna bodry Find down
Wihe a mostry that day to the news winces
(Had what icherced and I'm nigga"" and some talk to beinn shood late you, fly Me down
Youce, I and fleassy is

Iteration: 10000

as the comphol of step
Stand American, no more
Yeah my Benz,.AD and brosi?
Cause you'll take me, breaks to the good I'll never said, ""I met her bitch's pussy is a proll ...
WHO WILL Say everything
We been a minute it's liberatimes?
(Stop that religious and the hegasn of me, steps dead)
I can't contlights you
I bet stop me, I won't you
I cant face and flesed
Tellin' it and sales there
Got a niggas ass a lots over?
So I clay messin 6 wrong baby
Dog, we lose, ""Can't say how I'm heren

Iteration: 231000

right here, history on you
Dees so can do now, sippin' with niggas want to go

[Hook]
Good morning!
He wanna kend care helped all wingâ€Ļ the live, man
I'm taking all in my sleep, Im out him and I ain't inspired?
Okay, go you're pastor save being make them
White hit Victure up, it can go down

[Outro: Kanye West]
One time
To make them other you're like Common
A lit it, I'mma bridgeidenace before the most high
Ugh! we get much higher

Tagore

Iteration: 0

ā§ŦāĻˆaāĻĨEā§§ā§ŠāĻ“)#āĻˆāĻā§Ž EāĻ āĻŋāĻžā§"ā§ˆ|āĻ›āĻ¯āĻ‡ āĻž;ā§‡ā§­āĻ–hā§ēāĻŸnāĻĸepiāĻ—āĻ¸āĻ¤āĻ™gāĻž(āĻ‚gāĻ›ā§uā§ŽāĻŠā§ƒ_āĻš-w|!āĻˇcacāĻā§ˆ)'āĻā§¯;uāĻ‹:;āĻˆe ,nāĻĒā§ˆwāĻžk#gāĻ•ā§ĢāĻŠwWvā§ģv|āĻŠcāĻĄ.āĻšāĻāĻƒāĻžāĻŠPāĻ¯āĻˇā§€ā§¯āĻ—āĻāĻ‰C#āĻ° ā§ŒCāĻĨiāĻnāĻŽā§¯#x:āĻŦāĻĸāĻ‹xgā§Ģ:xā§ģā§ĢāĻ¯āĻŧTāĻš#BaāĻĄāĻŧ 		n#iā§‚ā§wāĻĢbP.EāĻ”āĻ–āĻļāĻ¤?āĻŸāĻ¯āĻŧāĻĸāĻƒāĻˇā§ˆāĻ†mā§˛āĻĨ,āĻ†āĻāĻƒhāĻœsā§Ž)ā§¨gāĻˇt|"āĻ“y.āĻ¨Â 
,HāĻ ZāĻŸāĻžbāĻ”āĻāĻ°ā§ŽāĻ›āĻ˛āĻ…h"
nā§ģāĻ¯āĻĢā§Štā§ŦāĻĻāĻ˛Zā§¯ā§˛ā§ā§˛ā§‚ā§ˆChāĻŋā§˛āĻ˜tāĻĸāĻ¤āĻ¯āĻ•āĻŠa(#āĻ‡ā§˛)ā§€ā§ŒāĻ˜wO(cāĻĄāĻ•āĻāĻˇrā§€āĻžN?g-āĻ…gdāĻĸāĻĢa:ā§‹āĻĒāĻœā§naāĻ˜āĻĨāĻŦāĻ‚āĨ¤ā§Ŧā§āĻĨtāĻ—hā§ˆāĻ—āĻœāĻ›ā§āĻ›āĻ‡ā§€āĻˇkāĻā§ˆ(‌EHāĻ˛āĻ¸wāĻĨāĻ“ sā§‹āĻˆāĻŠāĻ¤OāĻā§ā§ā§€tāĻ¯ā§ŒrTāĻŽāĻœāĻļāĻŸāĻŽāĻ°ā§ŽāĻ˜āĻāĻšpāĻāĻwāĻāĻƒā§Ŧu
āĻāĨ¤āĻˆtāĻ§āĻŽā§ˆāĻĄāĻŧā§§wāĻ¨āĻ—āĻŽOOāĻ˜'āĻ˛āĻˆāĻāĻ–sā§­u.,?EāĻ‚poaā§ŽāĻ‡āĻ‚
vā§ŒāĻĸāĻŧāĻĢāĻŦpā§€āĻŖāĻ•āĻŖāĻŋā§€N:āĻĄāĻŧd| āĻÂ āĻāĻĒT-nN‌NāĻ‹OEāĻ§āĻ™āĻž;ā§€āĻ›
xāĻŠdā§āĻœ|āĻ‡āĻ¨āĻĸāĻĻcāĻ‰āĻ°"mmā§‹āĻā§‹bāĻĄāĻˆāĻ‰āĻĢāĻ¯āĻ§â€ŒghZpāĻbk"āĻŽH
ā§¯āĻžāĻ§)ā§§c
'
‌āĻ­sgāĻ•āĻ‹āĻ°aā§āĻž?ā§€ āĻ‚ā§¨āĻžāĻā§ŽāĻāĻƒā§ƒā§¨āĻŸā§Ži-āĻ‚āĻ¨āĻŋāĻ¸āĻ¨-Z:āĻžfā§˛

Iteration: 1000

āĻšāĻ‡āĻ¯āĻŧā§‡āĻ›ā§‡āĨ¤ āĻ•āĻŋāĻ¨ā§āĻ¤ā§ āĻĻā§ƒāĻˇā§āĻŸāĻžāĻ° āĻ•ā§āĻŖā§āĻĄāĻ¨āĻŋāĻŦ āĻ¯āĻžāĻ‡āĻˇā§‡āĻ° āĻĻāĻŋāĻĻāĻŋ, āĻ…āĻ¸āĻŽā§āĻšāĻŋāĻŖā§āĻ¯ āĻ†āĻŽāĻŋ āĻŦāĻžāĻ˛āĻ•āĻžāĻ˛ā§āĻ¯ āĻ¸āĻžāĻĄāĻŧāĻŋāĻ¯āĻŧāĻž āĻĒāĻĄāĻŧāĻŋāĻ˛ā§‡āĻ¨āĨ¤
āĻšāĻžāĻ°ā§‡ āĻŽāĻžāĻ āĻŋāĻ°āĻĒāĻŽā§āĻŦāĻ¤ā§€āĻ° āĻ•ā§āĻˇāĻŖ āĻ¨āĻžāĨ¤ āĻ­ā§ŽāĻ•ā§āĻˇāĻŖ āĻšāĻ¯āĻŧ, āĻŦāĻ˛āĻŋāĻ˛, "āĻ¸āĻ¤ā§āĻ¯; āĻ…āĻ¨ā§‡āĻ• āĻ¨āĻŦā§€āĻ°ā§āĻžāĻžāĻ¸āĻž āĻ¤āĻžāĻšāĻžāĻ° āĻāĻ•āĻŸāĻŋ āĻ…āĻ°āĻŖā§āĻĄā§āĻ¯ā§‡āĻŸāĻžāĻ°ā§€āĻ° āĻĨāĻŋāĻļ āĻšāĻ‡āĻ¯āĻŧāĻž āĻ†āĻŽāĻŋ āĻšāĻžāĻ°-āĻĒāĻĨ āĻŦāĻ°ā§āĻŽā§‡āĻ° āĻĒāĻĨāĻž āĻĒāĻĄāĻŧāĻŋāĻ˛ āĻĻā§‡āĻ–āĻžāĻ¨ā§‡āĻ‡ āĻ‰āĻ āĻŋāĻ˛āĨ¤ āĻ¨āĻž āĻ¸ā§‡āĻ‡āĻœāĻ¨ā§āĻ¯ āĻšāĻ¨ā§āĻŽā§‡āĻ° āĻ­āĻžāĻ‡, āĻāĻ•āĻĒā§āĻ°āĻžāĻŽ āĻšāĻ‡āĻ¯āĻŧāĻž āĻ–ā§‡āĻ˛āĻž āĻāĻŦāĻ‚ āĻŽāĻ¤ā§‹ āĻœāĻžāĻ¨āĻžāĻ‡āĻ¯āĻŧāĻž āĻŽāĻšāĻžāĻ° 		āĻŦāĻ¨ā§āĻ§ āĻ›āĻŋāĻ˛āĨ¤ āĻ¸āĻŋāĻ–āĻŦāĨ¤'
āĻŽāĻ¨ā§‡ āĻ¤āĻžāĻ° āĻŦāĻžāĻ˛āĻŋāĻ˛ā§‡āĻ¨, āĻŦāĻžāĻ­ā§€āĻ° āĻ†āĻŽāĻžāĻ°āĻ•āĻžāĻ° āĻœā§āĻ¯āĻžāĻĨ āĻ•ā§āĻ˛ āĻļā§‹āĻ• āĻĒāĻžāĻĄāĻŧāĻŋāĻ¯āĻŧāĻž āĻ¤āĻžāĻšāĻžāĻ•ā§‡ āĻ¨āĻŋāĻƒāĻļā§‡āĻˇ āĻ•āĻ°āĻŋāĻ¯āĻŧāĻž āĻ āĻŋāĻļāĻŋ āĻ†āĻ° āĻ–āĻŦāĻ°āĻŖ āĻĨāĻžāĻ•āĻŋāĻŦāĻ¤āĻžāĻ° āĻ¸āĻ™ā§āĻ—ā§‡ āĻļāĻŋāĻ­āĻŋāĻŦāĻžāĻ° āĻ¯āĻĨāĻžāĻ˛ā§‚āĻĒā§āĻ¤āĻžāĻ°ā§āĻ¯ āĻŦāĻžāĻĄāĻŧāĻŋāĻ¯āĻŧāĻžāĻ“ āĻ›ā§‡āĻ˛ā§‡āĻˇāĻŦāĻžāĻŦā§āĻ° āĻ¨ā§‚āĻœāĻŋāĻ¯āĻŧāĻžāĻ°āĻž āĻļā§āĻ¨āĻŋāĻ¤ā§‡ āĻ āĻžāĻˇ āĻšāĻ°āĻŖ āĻĢāĻžāĻĄāĻŧāĻŋ āĻĢā§‡āĻ˛āĻŋāĻ¯āĻŧā§‡ āĻ›āĻžāĻĄāĻŧāĻŋāĻ¯āĻŧāĻž āĻ¤ā§‹ āĻšāĻ¤ āĻ•āĻĒāĻŋ āĻāĻŽāĻ¨ 

Iteration: 10000

, n nthee tin-āĻāĻ•āĻŸāĻŋ āĻ¸āĻŦā§āĻƒāĻĄā§‡āĻļāĻ¨āĻĒāĻĻā§‡ āĻ†āĻŽāĻŋ āĻ¯āĻ–āĻ¨ āĻļā§‡āĻˇ āĻŦāĻŋāĻļā§āĻŦāĻžāĻ¸ āĻĻāĻŋāĻŦāĻžāĻ°āĻŋ āĻ¸āĻžāĻĻāĻž āĻ‰ā§ŽāĻ•āĻŸ āĻ…āĻŽāĻŋāĻ¯āĻŧāĻžāĻ° āĻ•āĻŖā§āĻ ā§‡ āĻļā§āĻ¨āĻŋāĻ¤ā§‡āĻ¨, 'āĻĻā§‹āĻ•āĻž, āĻ¸ā§āĻŦāĻ•ā§āĻˇā§‡āĻŸ āĻĻā§āĻ‡-āĻāĻ•āĻŦāĻžāĻ° āĻŽā§‚āĻ°ā§āĻ›ā§‡āĻ° āĻ‰āĻĒāĻ°āĻ‡ āĻ¯āĻ–āĻ¨ āĻĒāĻžāĻ“āĻ˛āĻž āĻ¤āĻžāĻšāĻžāĻ° āĻ¸ā§‡āĻ‡ āĻŦā§‡āĻĄāĻŧāĻžāĻ° āĻ‰āĻĒāĻ¨āĻŋāĻˇā§āĻŸāĻŋ āĻāĻ•āĻ–āĻ¨ āĻĻā§‡āĻ–āĻŋāĻŦāĻžāĻ° āĻļāĻ•ā§āĻ¤āĻŋāĻĒāĻ•ā§āĻ¤ āĻ•āĻ°āĻžāĻ‡āĻ˛ā§‡āĻ¨āĨ¤
āĻ†āĻŽāĻžāĻ•ā§‡ āĻŦāĻŋāĻ¨ā§āĻĻā§āĻ•ā§‡ āĻ¨āĻŋāĻĻā§āĻ°āĻŽ āĻšāĻ“āĻ¯āĻŧāĻžāĻ° āĻļāĻžāĻāĻ•ā§‡ āĻĢā§‡āĻ˛āĻŋāĻ•āĨ¤ āĻ•āĻžāĻŽāĻĄāĻŧāĻžāĻšā§āĻ›-āĻ–ā§‡āĻ¯āĻŧā§‡ āĻ¯āĻœā§āĻžā§‡āĻļā§āĻŦāĻ°ā§‚āĻĒā§‡ āĻ§ā§€āĻ°ā§‡ āĻ†āĻŽāĻžāĻ° āĻ ā§‡āĻ˛āĻŋāĻ¯āĻŧāĻž āĻ­āĻžāĻ˛ā§‹ āĻ¨āĻžāĻ‡ āĻ¤āĻž āĻ†āĻŦāĻžāĻ° āĻŦāĻ˛āĻ˛ āĻ¯āĻ–āĻ¨ āĻ¨āĻž'āĻ•āĻžāĻĄāĻŧā§‡āĻ° āĻ‰āĻĒāĻ° āĻŦāĻŋāĻļā§‡āĻˇ āĻ‰āĻĒāĻ° āĻ āĻŋāĻ•ā§‡ āĻ¯āĻžāĻ‡āĻ¤, āĻ•ā§‡āĻŦāĻ˛ āĻŽāĻ¨ā§‡ āĻ•āĻ°āĻž āĻĒāĻĄāĻŧ āĻŦā§āĻ°āĻ¤āĻŋāĻĻāĻŋāĻ¨ā§‡ āĻ†āĻ°ā§‹ āĻ˛āĻĄāĻŧ āĻĻāĻŋāĻ¯āĻŧāĻž āĻ†āĻļāĻ¯āĻŧ āĻĻāĻŋāĻ¯āĻŧāĻž āĻ¸ā§‡ 		āĻŦā§āĻāĻŋāĻ¤ā§‡ āĻšāĻ¯āĻŧ āĻ¨āĻžāĨ¤
āĻ‡āĻ‚āĻ°ā§‡āĻœāĻŋ āĻĒāĻĄāĻŧāĻž āĻœā§€āĻŦāĻ¨ āĻ—āĻžāĻ¯āĻŧā§‡ āĻšāĻ˛āĻŋāĻ¯āĻŧāĻž āĻ—ā§‡āĻ˛āĨ¤
āĻ¤āĻ–āĻ¨ āĻāĻ•āĻŸāĻŋ āĻ†āĻ¯āĻŧā§‹āĻœāĻ¨āĻĻāĻžāĻ°ā§āĻ¯ āĻŽāĻžāĻĻāĻ•ā§‡ āĻŦāĻ˛āĻŋāĻŦā§‡ āĻ¨āĻž, āĻ¨āĻ¤ā§āĻĒā§‚āĻŽāĻ˛ā§€ āĻ¨āĻž āĻĻā§‡āĻ–āĻž āĻāĻ•āĻŸāĻŋ āĻŽā§‡āĻ¯āĻŧā§‡āĻŸāĻŋ

Iteration: 511000

āĻ¨āĻž, āĻ¤āĻŦā§ āĻ¯ā§‡āĻŽāĻ¨ āĻ˛āĻžāĻŦāĻŖā§āĻ¯ āĻĒā§āĻ°āĻžāĻŽāĻ˛āĻž āĻ›āĻžāĻĄāĻŧāĻŋāĻ¯āĻŧāĻž āĻĻāĻŋāĻ˛, āĻ¤āĻžāĻšāĻžāĻĻā§‡āĻ° āĻāĻŽāĻ¨ āĻ¸āĻžāĻĻāĻžāĻ¸āĻŋāĻ§āĻž āĻŦāĻ˛āĻŋāĻ˛, 'āĻ¤ā§āĻŽāĻŋ āĻ¤ā§‹āĻ˛āĻž āĻšāĻžāĻ¸āĻŋ āĻ†āĻ° āĻ•ā§‡āĻ‰ āĻ›ā§‡āĻ˛ā§‡āĻŽāĻžāĻ¨ā§āĻˇ āĻ¨āĻžāĻ‡āĨ¤'
āĻ¸āĻ¤ā§€āĻļāĨ¤ āĻĻā§āĻŸāĻŋ āĻ­ā§€āĻ¤ āĻŽā§‡āĻœāĻŋāĻ¯āĻŧāĻž āĻŦāĻ˛āĻŋāĻ˛āĻžāĻŽ, 'āĻĻāĻžāĻĻāĻž, āĻ¤ā§‹āĻŽāĻžāĻ•ā§‡ āĻ—ā§‡āĻ˛āĻžāĻŽ āĻ¨āĻžāĨ¤ āĻĒāĻĨāĻŋāĻ•ā§‡āĻ°āĻž āĻ–āĻžāĻ¤āĻžāĨ¤ āĻšāĻŦāĻŋāĻ° āĻŸā§‡āĻ¨ā§‡ āĻ‰āĻĒāĻŦāĻžāĻ¸ āĻ˛āĻžāĻ—āĻ˛ā§‡āĨ¤ āĻ…āĻ¨ā§āĻ¯āĻžāĻ¯āĻŧ āĻ¸āĻ•āĻ˛ā§‡āĻ° āĻ¸āĻžāĻ°ā§āĻœāĻ¨ā§‡ āĻ†āĻŽāĻžāĻĻā§‡āĻ° āĻŦāĻžāĻĄāĻŧāĻŋāĻ° āĻ¸ā§‚āĻ•ā§āĻˇā§āĻŖ āĻĒā§āĻŸā§‡āĻ° āĻ­āĻžāĻŸāĻžāĻŸāĻž āĻŦā§‹āĻ¨ā§‡āĻ° āĻĒāĻĻāĻ¨āĻžāĻ° āĻ‰āĻĒāĻ° āĻŦāĻšāĻŋāĻ¯āĻŧāĻž āĻ…āĻ¸ā§āĻĨāĻŋāĻ° āĻ•āĻ°āĻŋāĻ¯āĻŧāĻž āĻĒāĻžāĻ‡āĨ¤ 		 	 āĻā§‹āĻ•āĻ¸ā§āĻŦāĻ˛ā§€āĻ¨āĻžāĻĒāĻžāĻ¨āĻ•ā§‡ āĻšāĻŋāĻšā§āĻ¨ āĻ˛āĻ‡āĻ¯āĻŧāĻž āĻĻāĻžāĻŸāĻŋāĻ° āĻ¨āĻ¨ā§€āĻ° āĻŽāĻ§ā§āĻ¯ āĻšāĻ‡āĻ¤ā§‡ āĻĒāĻ°āĻŦāĻžāĻ° āĻ¸āĻšāĻ¯āĻžāĻ¤ā§āĻ°ā§€ āĻŦāĻ˛āĻŋāĻŦāĨ¤ āĻ¨āĻŋāĻœā§‡āĻ•ā§‡ āĻŸā§‡āĻāĻ•ā§‡ āĻ¨āĻžāĨ¤ āĻ†āĻœ āĻ¤ā§‹āĻŽāĻžāĻ•ā§‡ āĻ†āĻŽāĻžāĻ° āĻŦāĻžāĻĄāĻŧāĻŋāĻ° āĻ‡āĻšā§āĻ›āĻž āĻšāĻ¯āĻŧā§‡ āĻ‰āĻ ā§‡āĨ¤
āĻ‰āĻ˛ā§āĻŸāĻž āĻ•āĻ°āĻŋāĻŦā§‡āĻ¨, 'āĻšā§‡āĻŽāĻĨāĻžāĻ°āĻž āĻ˛āĻ•ā§āĻˇā§āĻ¯ āĻ•āĻ°ā§‡ āĻ—ā§‡āĻ˛āĨ¤ āĻ‡āĻ¤āĻŋāĻŽāĻ§ā§āĻ¯ā§‡ āĻ¸āĻŽāĻ¸ā§āĻ¤ āĻ¯āĻ¤ā§āĻ¨ā§‡ āĻŦāĻžāĻšāĻŋāĻ° āĻšāĻ‡āĻ¤ā§‡ āĻĒāĻ°āĻŋāĻ¤ā§‡ āĻšāĻžāĻœāĻžāĻ° āĻĻā§€āĻĒ

Author

Greg (Grzegorz) Surma

PORTFOLIO

GITHUB

BLOG

More Repositories

1

style_transfer

CNN image style transfer 🎨.
Jupyter Notebook
272
star
2

atari

AI research environment for the Atari 2600 games 🤖.
Python
247
star
3

image_generator

DCGAN image generator đŸ–ŧī¸.
Jupyter Notebook
214
star
4

face_generator

DCGAN face generator 🧑.
Jupyter Notebook
200
star
5

image_classifier

CNN image classifier implemented in Keras Notebook đŸ–ŧī¸.
Jupyter Notebook
178
star
6

cartpole

OpenAI's cartpole env solver.
Python
143
star
7

slitherin

AI research environment for the game of Snake 🐍 .
Python
90
star
8

jetson

Self-driving AI toy car 🤖🚗.
Jupyter Notebook
80
star
9

metal_camera

iOS metal camera with GPU shaders.
Swift
73
star
10

pixelizator

Swift/Python image pixelizer đŸ–ŧī¸.
Swift
68
star
11

deep_traffic

MIT DeepTraffic top 2% solution (75.01 mph) 🚗.
JavaScript
56
star
12

password_cracker

Char-level RNN LSTM password cracker 🔑🔓.
55
star
13

stereo_depth_estimator

Stereo depth estimation for self-driving cars 🚗
Python
49
star
14

edge_detector

HED real-time iOS edge detector.
Swift
43
star
15

deep_dream

DeepDream psychodelic image generator.
Python
39
star
16

sliding_puzzle

Swift implementation of the Sliding Puzzle game with Iterative Deepening A* AI Solver.
Swift
35
star
17

street_lanes_finder

Street lanes finder for self-driving cars🚗.
Jupyter Notebook
34
star
18

gsurma.github.io

Greg's Portfolio 🌎.
HTML
31
star
19

digit_recognizer

CNN digit recognizer implemented in Keras Notebook, Kaggle/MNIST (0.995).
Jupyter Notebook
30
star
20

meta_intelligence

AI research environment for program generation.
Python
27
star
21

histopathologic_cancer_detector

CNN histopathologic tumor identifier.
Jupyter Notebook
27
star
22

mono_depth_estimator

Mono depth estimation for self-driving cars 🚗
Jupyter Notebook
24
star
23

image_tagger

CNN multi-label image classifier đŸ–ŧī¸.
Jupyter Notebook
20
star
24

twitter_data_parser

Python scripts that download metadata and tweets for given users.
Python
18
star
25

prison_escape

Prisoner's Dilemma research environment.
Jupyter Notebook
16
star
26

cnn_explainer

Making CNNs interpretable.
Jupyter Notebook
15
star
27

newstagram

Simple iOS news feed app where you can customize categories and regions.
Swift
15
star
28

diffie_hellman_key_exchange

Swift implementation of classic cryptographic key exchange method.
Swift
15
star
29

prime_numbers_generator

Eratosthenes Sieve based prime numbers generator written in Swift.
Swift
11
star
30

sleepless_mac

Status bar app that prevents your mac from sleeping.
Swift
10
star
31

rpi_lcd_system_monitoring

Python scripts that display sytem data on i2c LCD screen.
Python
7
star
32

pong

iOS implementation of the classic Atari Pong game.
Swift
6
star
33

xcode_project_cleaner

Shell script that quickly cleans up xcode project.
Shell
6
star
34

game_of_life

NetLogo implementation of Conway's Game Of Life.
NetLogo
6
star
35

github_feed

Visually simple yet powerful github feed app.
Swift
4
star
36

stellar

Astronomy Photo of the Day 🚀.
Swift
4
star
37

gsurma

3
star