• Stars
    star
    427
  • Rank 101,680 (Top 3 %)
  • Language
    Jupyter Notebook
  • License
    Other
  • Created about 12 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

semantic similarity framework for knowledge graph

logo


Introduction

Sematch is an integrated framework for the development, evaluation, and application of semantic similarity for Knowledge Graphs (KGs). It is easy to use Sematch to compute semantic similarity scores of concepts, words and entities. Sematch focuses on specific knowledge-based semantic similarity metrics that rely on structural knowledge in taxonomy (e.g. depth, path length, least common subsumer), and statistical information contents (corpus-IC and graph-IC). Knowledge-based approaches differ from their counterpart corpus-based approaches relying on co-occurrence (e.g. Pointwise Mutual Information) or distributional similarity (Latent Semantic Analysis, Word2Vec, GLOVE and etc). Knowledge-based approaches are usually used for structural KGs, while corpus-based approaches are normally applied in textual corpora.

In text analysis applications, a common pipeline is adopted in using semantic similarity from concept level, to word and sentence level. For example, word similarity is first computed based on similarity scores of WordNet concepts, and sentence similarity is computed by composing word similarity scores. Finally, document similarity could be computed by identifying important sentences, e.g. TextRank.

logo

KG based applications also meet similar pipeline in using semantic similarity, from concept similarity (e.g. http://dbpedia.org/class/yago/Actor109765278) to entity similarity (e.g. http://dbpedia.org/resource/Madrid). Furthermore, in computing document similarity, entities are extracted and document similarity is computed by composing entity similarity scores.

kg

In KGs, concepts usually denote ontology classes while entities refer to ontology instances. Moreover, those concepts are usually constructed into hierarchical taxonomies, such as DBpedia ontology class, thus quantifying concept similarity in KG relies on similar semantic information (e.g. path length, depth, least common subsumer, information content) and semantic similarity metrics (e.g. Path, Wu & Palmer,Li, Resnik, Lin, Jiang & Conrad and WPath). In consequence, Sematch provides an integrated framework to develop and evaluate semantic similarity metrics for concepts, words, entities and their applications.


Getting started: 20 minutes to Sematch

Install Sematch

You need to install scientific computing libraries numpy and scipy first. An example of installing them with pip is shown below.

pip install numpy scipy

Depending on different OS, you can use different ways to install them. After sucessful installation of numpy and scipy, you can install sematch with following commands.

pip install sematch
python -m sematch.download

Alternatively, you can use the development version to clone and install Sematch with setuptools. We recommend you to update your pip and setuptools.

git clone https://github.com/gsi-upm/sematch.git
cd sematch
python setup.py install

We also provide a Sematch-Demo Server. You can use it for experimenting with main functionalities or take it as an example for using Sematch to develop applications. Please check our Documentation for more details.

Computing Word Similarity

The core module of Sematch is measuring semantic similarity between concepts that are represented as concept taxonomies. Word similarity is computed based on the maximum semantic similarity of WordNet concepts. You can use Sematch to compute multi-lingual word similarity based on WordNet with various of semantic similarity metrics.

from sematch.semantic.similarity import WordNetSimilarity
wns = WordNetSimilarity()

# Computing English word similarity using Li method
wns.word_similarity('dog', 'cat', 'li') # 0.449327301063
# Computing Spanish word similarity using Lin method
wns.monol_word_similarity('perro', 'gato', 'spa', 'lin') #0.876800984373
# Computing Chinese word similarity using  Wu & Palmer method
wns.monol_word_similarity('狗', '猫', 'cmn', 'wup') # 0.857142857143
# Computing Spanish and English word similarity using Resnik method
wns.crossl_word_similarity('perro', 'cat', 'spa', 'eng', 'res') #7.91166650904
# Computing Spanish and Chinese word similarity using Jiang & Conrad method
wns.crossl_word_similarity('perro', '猫', 'spa', 'cmn', 'jcn') #0.31023804699
# Computing Chinese and English word similarity using WPath method
wns.crossl_word_similarity('ç‹—', 'cat', 'cmn', 'eng', 'wpath')#0.593666388463

Computing semantic similarity of YAGO concepts.

from sematch.semantic.similarity import YagoTypeSimilarity
sim = YagoTypeSimilarity()

#Measuring YAGO concept similarity through WordNet taxonomy and corpus based information content
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Actor109765278', 'wpath') #0.642
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Singer110599806', 'wpath') #0.544
#Measuring YAGO concept similarity based on graph-based IC
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Actor109765278', 'wpath_graph') #0.423
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Singer110599806', 'wpath_graph') #0.328

Computing semantic similarity of DBpedia concepts.

from sematch.semantic.graph import DBpediaDataTransform, Taxonomy
from sematch.semantic.similarity import ConceptSimilarity
concept = ConceptSimilarity(Taxonomy(DBpediaDataTransform()),'models/dbpedia_type_ic.txt')
concept.name2concept('actor')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'path')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'wup')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'li')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'res')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'lin')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'jcn')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'wpath')

Computing semantic similarity of DBpedia entities.

from sematch.semantic.similarity import EntitySimilarity
sim = EntitySimilarity()
sim.similarity('http://dbpedia.org/resource/Madrid','http://dbpedia.org/resource/Barcelona') #0.409923677282
sim.similarity('http://dbpedia.org/resource/Apple_Inc.','http://dbpedia.org/resource/Steve_Jobs')#0.0904545454545
sim.relatedness('http://dbpedia.org/resource/Madrid','http://dbpedia.org/resource/Barcelona')#0.457984139871
sim.relatedness('http://dbpedia.org/resource/Apple_Inc.','http://dbpedia.org/resource/Steve_Jobs')#0.465991132787

Evaluate semantic similarity metrics with word similarity datasets

from sematch.evaluation import WordSimEvaluation
from sematch.semantic.similarity import WordNetSimilarity
evaluation = WordSimEvaluation()
evaluation.dataset_names()
wns = WordNetSimilarity()
# define similarity metrics
wpath = lambda x, y: wns.word_similarity_wpath(x, y, 0.8)
# evaluate similarity metrics with SimLex dataset
evaluation.evaluate_metric('wpath', wpath, 'noun_simlex')
# performa Steiger's Z significance Test
evaluation.statistical_test('wpath', 'path', 'noun_simlex')
# define similarity metrics for Spanish words
wpath_es = lambda x, y: wns.monol_word_similarity(x, y, 'spa', 'path')
# define cross-lingual similarity metrics for English-Spanish
wpath_en_es = lambda x, y: wns.crossl_word_similarity(x, y, 'eng', 'spa', 'wpath')
# evaluate metrics in multilingual word similarity datasets
evaluation.evaluate_metric('wpath_es', wpath_es, 'rg65_spanish')
evaluation.evaluate_metric('wpath_en_es', wpath_en_es, 'rg65_EN-ES')

Evaluate semantic similarity metrics with category classification

Although the word similarity correlation measure is the standard way to evaluate the semantic similarity metrics, it relies on human judgements over word pairs which may not have same performance in real applications. Therefore, apart from word similarity evaluation, the Sematch evaluation framework also includes a simple aspect category classification. The task classifies noun concepts such as pasta, noodle, steak, tea into their ontological parent concept FOOD, DRINKS.

from sematch.evaluation import AspectEvaluation
from sematch.application import SimClassifier, SimSVMClassifier
from sematch.semantic.similarity import WordNetSimilarity

# create aspect classification evaluation
evaluation = AspectEvaluation()
# load the dataset
X, y = evaluation.load_dataset()
# define word similarity function
wns = WordNetSimilarity()
word_sim = lambda x, y: wns.word_similarity(x, y)
# Train and evaluate metrics with unsupervised classification model
simclassifier = SimClassifier.train(zip(X,y), word_sim)
evaluation.evaluate(X,y, simclassifier)

macro averge:  (0.65319812882333839, 0.7101245049198579, 0.66317566364913016, None)
micro average:  (0.79210167952791644, 0.79210167952791644, 0.79210167952791644, None)
weighted average:  (0.80842645056024054, 0.79210167952791644, 0.79639496616636352, None)
accuracy:  0.792101679528
             precision    recall  f1-score   support

    SERVICE       0.50      0.43      0.46       519
 RESTAURANT       0.81      0.66      0.73       228
       FOOD       0.95      0.87      0.91      2256
   LOCATION       0.26      0.67      0.37        54
   AMBIENCE       0.60      0.70      0.65       597
     DRINKS       0.81      0.93      0.87       752

avg / total       0.81      0.79      0.80      4406

Matching Entities with type using SPARQL queries

You can use Sematch to download a list of entities having a specific type using different languages. Sematch will generate SPARQL queries and execute them in DBpedia Sparql Endpoint.

from sematch.application import Matcher
matcher = Matcher()
# matching scientist entities from DBpedia
matcher.match_type('scientist')
matcher.match_type('científico', 'spa')
matcher.match_type('科学家', 'cmn')
matcher.match_entity_type('movies with Tom Cruise')

Example of automatically generated SPARQL query.

SELECT DISTINCT ?s, ?label, ?abstract WHERE {
    {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/NuclearPhysicist110364643> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Econometrician110043491> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Sociologist110620758> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Archeologist109804806> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Neurolinguist110354053> . } 
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Thing> . 
    ?s <http://www.w3.org/2000/01/rdf-schema#label> ?label . 
    FILTER( lang(?label) = "en") . 
    ?s <http://dbpedia.org/ontology/abstract> ?abstract . 
    FILTER( lang(?abstract) = "en") .
} LIMIT 5000

Entity feature extraction with Similarity Graph

Apart from semantic matching of entities from DBpedia, you can also use Sematch to extract features of entities and apply semantic similarity analysis using graph-based ranking algorithms. Given a list of objects (concepts, words, entities), Sematch compute their pairwise semantic similarity and generate similarity graph where nodes denote objects and edges denote similarity scores. An example of using similarity graph for extracting important words from an entity description.

from sematch.semantic.graph import SimGraph
from sematch.semantic.similarity import WordNetSimilarity
from sematch.nlp import Extraction, word_process
from sematch.semantic.sparql import EntityFeatures
from collections import Counter
tom = EntityFeatures().features('http://dbpedia.org/resource/Tom_Cruise')
words = Extraction().extract_nouns(tom['abstract'])
words = word_process(words)
wns = WordNetSimilarity()
word_graph = SimGraph(words, wns.word_similarity)
word_scores = word_graph.page_rank()
words, scores =zip(*Counter(word_scores).most_common(10))
print words
(u'picture', u'action', u'number', u'film', u'post', u'sport', 
u'program', u'men', u'performance', u'motion')

Publications


Support

You can post bug reports and feature requests in Github issues. Make sure to read our guidelines first. This project is still under active development approaching to its goals. The project is mainly maintained by Ganggao Zhu. You can contact him via gzhu [at] dit.upm.es


Why this name, Sematch and Logo?

The name of Sematch is composed based on Spanish "se" and English "match". It is also the abbreviation of semantic matching because semantic similarity metrics helps to determine semantic distance of concepts, words, entities, instead of exact matching.

The logo of Sematch is based on Chinese Yin and Yang which is written in I Ching. Somehow, it correlates to 0 and 1 in computer science.

GSI Logo

More Repositories

1

senpy

A sentiment and emotion analysis server in Python
Python
71
star
2

soil

Python
28
star
3

video-sentiment-analysis

JavaScript
23
star
4

calista-bot

Hybrid Bot architecture based on the combination of a search engine, agent technology and chat scrpt
Python
19
star
5

sitc

Notebooks for learning intelligent systems - GSI - UPM
Jupyter Notebook
14
star
6

scaner

Social Context Analysis aNd Emotion Recognition
Python
12
star
7

SAGA

Java
10
star
8

SEAS

Java
10
star
9

BigTweet

BigTweet is an agent-based social simulator for rumor spreading models and rumor control strategies in Twitter with support for Big Data technologies
Java
9
star
10

financial-twitter-tracker

JavaScript
8
star
11

senpy-plugins-community

Open source senpy plugins
Python
6
star
12

SmartSim

C++
6
star
13

Sefarad

JavaScript
6
star
14

gsitk

gsitk is a framework to perform a wide variety of sentiment analysis tasks including dataset acquisition, text preprocessing, model design, and performance evaluation.
Python
5
star
15

absa

Aspect Based Sentiment Analysis for Culinary domain
JavaScript
4
star
16

Maia

The evented and agent-oriented architecture
JavaScript
4
star
17

sematch-demo

sematch demo
HTML
4
star
18

simon-paper

Repository of the paper "A Semantic Similarity-Based Perspective of Affect Lexicons for Sentiment Analysis"
4
star
19

Sefarad-old

JavaScript
3
star
20

ewe-tasker-android

Java
3
star
21

Financial-Twitter-Tracker-Demo

Java
2
star
22

eurosentiment-generator

Portal to convert legacy data to semantic formats (e.g. Marl and Onyx in JSON-LD)
Python
2
star
23

nerdy

Python
2
star
24

Shanks

Simulation framework based on MASON to simulate heterogeneous networks and intelligent agents
Java
2
star
25

emoevales-iberlef2021

GSI participation at EmoEvalEs - IberLEF 2021
Jupyter Notebook
2
star
26

wnaffect-skos

SKOS version of WordNet-Affect
HTML
2
star
27

docon

Conversion tool for text formats
JavaScript
1
star
28

soba

Simulation Occupancy based on Agents
Jupyter Notebook
1
star
29

semeval2019-hatespeech

Jupyter Notebook
1
star
30

oslc-eca_environment

Java
1
star
31

senpy-translator-bing

Senpy Plugin for carrying out translation with Bing in a Datapipeline
Makefile
1
star
32

VoteSim

Social Choice simulator based on UbikSim
Java
1
star
33

sefarad-3.0

Repository moved to https://github.com/gsi-upm/sefarad
JavaScript
1
star
34

senpy-full

Dockerfile and submodules to deploy senpy and all the modules
Roff
1
star
35

soneti

HTML
1
star
36

gsicrawler

Ruby
1
star
37

depression-sl-text

Jupyter Notebook
1
star
38

dsss-2018

Data science Summer School 2018 - Bucharest
Jupyter Notebook
1
star
39

shanks-wsn-module

Module for Shanks Simulator (shanks-core) that includes a Wireless Sensors Network (WSN) scenario
Java
1
star
40

Episteme

JavaScript
1
star
41

BARMAS

Bayesian ARgumentation Multi-Agent System
Java
1
star
42

BeastTool

Testing framework for Multi-Agent Systems based on Behaviour Driven Development
Java
1
star
43

TwitterSimulator

Simulator for Twitter network and users
Java
1
star