• Stars
    star
    545
  • Rank 81,554 (Top 2 %)
  • Language
  • Created over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A curated list of Google Earth Engine resources

Awesome Earth Engine Awesome

A curated list of Google Earth Engine resources. Please visit the Awesome-GEE GitHub repo if you want to contribute to this project.

Table of Contents

Earth Engine official websites

Get Started

  1. Sign up for an Earth Engine account.
  2. Read the Earth Engine API documentation - Get Started with Earth Engine.
  3. Read another Earth Engine API documentation - Client vs. Server. Make sure you have a good understanding of client-side objects vs server-side objects.
  4. Try out the JavaScript API or Python API (e.g., geemap).
  5. Read Coding Best Practices.

Get Help

JavaScript API

Playground

Repositories

Tutorials

Books

Python API

Installation

Packages

  • earthengine-api - The official Google Earth Engine Python API.
  • geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.
  • geeadd - Google Earth Engine Batch Asset Manager with Addons.
  • geeup - Simple CLI for Google Earth Engine Uploads.
  • cartoee - Publication quality maps using Earth Engine and Cartopy.
  • gee_tools - A set of tools for working with Google Earth Engine Python API.
  • landsat-extract-gee - Get Landsat surface reflectance time-series from google earth engine.
  • Ndvi2Gif - Creating seasonal NDVI compositions GIFs.
  • eemont - A Python package that extends the Google Earth Engine Python API with pre-processing and processing tools.
  • hydra-floods - An open source Python application for downloading, processing, and delivering surface water maps derived from remote sensing data.
  • restee - A package that aims to make plugging Earth Engine computations into downstream Python processing easier.
  • wxee - A Python interface between Earth Engine and xarray for processing weather and climate data.
  • taskee - Monitor your Earth Engine tasks and get notifications on your phone or computer.
  • geedim - Search, composite, and download Earth Engine imagery, without size limits.

Repositories

Tutorials

Books

R

Packages

  • rgee - An R package for using Google Earth Engine.
  • earthEngineGrabR - Simplify the acquisition of remote sensing data.

Repositories

  • rgee-examples - A collection of 250+ examples for using Google Earth Engine with R.

Tutorials

QGIS

Packages

  • Earth Engine QGIS Plugin (Website, GitHub) - Integrates Google Earth Engine and QGIS using Python API.

Repositories

Tutorials

GitHub Developers

Community

Individuals

Twitter

Bots

Google affiliated

Individuals

Apps

Free Courses

Presentations

geemap

General

Videos

Google

General

  • Getting Started with Earth Engine with Sabrina Szeto (video - slides)
  • Earth Engine Virtual Meetup on May 6, 2020 (video)

geemap

Projects

Websites

Datasets

Community Datasets

Landsat

Sentinel

NAIP

Land Cover

Papers

Highlights

  • Aybar, C., Wu, Q., Bautista, L., Yali, R., & Barja, A. (2020). rgee: An R package for interacting with Google Earth Engine. The Journal of Open Source Software. 5(51), 2272. https://doi.org/10.21105/joss.02272
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18โ€“27. https://doi.org/10.1016/j.rse.2017.06.031
  • Wu, Q. (2020). geemap: A Python package for interactive mapping with Google Earth Engine. The Journal of Open Source Software. 5(51), 2305. https://doi.org/10.21105/joss.02305

Journal Special Issues

  • Journal of Remote Sensing, Remote Sensing for Environmental and Societal Changes Using Google Earth Engine (Call for Papers)
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Cloud Computing in Google Earth Engine for Remote Sensing (Call for Papers)
  • Remote Sensing, Google Earth Engine and Cloud Computing Platforms: Methods and Applications in Big Geo Data Science (Call for Papers, Published Papers)
  • Remote Sensning, Google Earth Engine Applications (Call for Papers, Published Papers)
  • Remote Sensing of Environment, Remote Sensing of Land Change Science with Google Earth Engine (Call for Papers, Published Papers)

Review

  • Amani, M., Ghorbanian, A., Ahmadi, A., Kakooei, M., ..., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2020.3021052
  • Boothroyd, R., Williams, R., Hoey, T., Barrett, B., & Prasojo, O. (2020). Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water. https://doi.org/10.1002/wat2.1496
  • Kumar, L., Mutanga, O., 2018. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing 10, 1509. https://doi.org/10.3390/rs10101509
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 164, 152โ€“170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Wang, L., Diao, C., Xian, G., Yin, D., Lu, Y., Zou, S., & Erickson, T. A. (2020). A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2020.112002
  • Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., & Lippitt, C. D. (2022). Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sensing, 14(14), 3253. https://doi.org/10.3390/rs14143253
  • Yang, L., Driscol, J., Sarigai, S., Wu, Q., Lippitt, C. D., & Morgan, M. (2022). Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing. Sensors, 22(6), 2416. https://doi.org/10.3390/s22062416

Hydrology

  • Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., van de Giesen, N., 2016. Earthโ€™s surface water change over the past 30 years. Nat. Clim. Chang. 6, 810. https://doi.org/10.1038/nclimate3111
  • Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418โ€“422. https://doi.org/10.1038/nature20584
  • Wu, Q., Lane, C.R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H.E., Lang, M.W., 2019. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 228, 1โ€“13. https://doi.org/10.1016/j.rse.2019.04.015
  • Yamazaki, D., Trigg, M.A., 2016. Hydrology: The dynamics of Earthโ€™s surface water. Nature. https://doi.org/10.1038/nature21100

Urban

  • Li, X., Zhou, Y., Zhu, Z., Cao, W., 2020. A national dataset of 30 m annual urban extent dynamics (1985โ€“2015) in the conterminous United States. Earth System Science Data 12, 357. https://doi.org/10.5194/essd-12-357-2020
  • Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., Wang, S., 2018. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 209, 227โ€“239. https://doi.org/10.1016/j.rse.2018.02.055
  • Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K., Ziegler, A.D., Chen, A., Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., Zeng, Z., 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability 1โ€“7. https://doi.org/10.1038/s41893-020-0521-x
  • Patel, N.N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F.R., Tatem, A.J., Trianni, G., 2015. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 35, 199โ€“208. https://doi.org/10.1016/j.jag.2014.09.005
  • Weiss, D.J., Nelson, A., Gibson, H.S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T.C.D., Howes, R.E., Tusting, L.S., Kang, S.Y., Cameron, E., Bisanzio, D., Battle, K.E., Bhatt, S., Gething, P.W., 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333โ€“336. https://doi.org/10.1038/nature25181

Vegetation

  • Li, X., Zhou, Y., Meng, L., Asrar, G.R., Lu, C., Wu, Q., 2019. A dataset of 30 m annual vegetation phenology indicators (1985โ€“2015) in urban areas of the conterminous United States. Earth System Science Data. 11(2), 881-894. https://doi.org/10.5194/essd-11-881-2019
  • Robinson, N.P., Allred, B.W., Jones, M.O., Moreno, A., Kimball, J.S., Naugle, D.E., Erickson, T.A., Richardson, A.D., 2017. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sensing 9, 863. https://doi.org/10.3390/rs9080863
  • Xie, Z., Phinn, S.R., Game, E.T., Pannell, D.J., Hobbs, R.J., Briggs, P.R., McDonald-Madden, E., 2019. Using Landsat observations (1988โ€“2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. Remote Sens. Environ. 232, 111317. https://doi.org/10.1016/j.rse.2019.111317

Agriculture

  • Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B., 3rd, 2016. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 185, 142โ€“154. https://doi.org/10.1016/j.rse.2016.02.016
  • Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, K., Thau, D., 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 126, 225โ€“244. https://doi.org/10.1016/j.isprsjprs.2017.01.019
  • Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., Yadav, K., Gorelick, N., 2017. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sensing 9, 1065. https://doi.org/10.3390/rs9101065

Wetlands

  • Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad Mirzadeh, S., White, L., Banks, S., Montgomery, J., Hopkinson, C., 2019. Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. Remote Sensing 11, 842. https://doi.org/10.3390/rs11070842
  • Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., Giri, C., 2017. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104โ€“120. https://doi.org/10.1016/j.isprsjprs.2017.07.011
  • Hird, J.N., DeLancey, E.R., McDermid, G.J., Kariyeva, J., 2017. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. Remote Sensing 9, 1315. https://doi.org/10.3390/rs9121315
  • Mahdianpari, M., Brisco, B., Granger, J. E., Mohammadimanesh, F., Salehi, B., Banks, S., ... & Weng, Q. (2020). The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth Engine. Canadian Journal of Remote Sensing, 46(3), 360-375. https://doi.org/10.1080/07038992.2020.1802584
  • Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., 2018. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sensing 11, 43. https://doi.org/10.3390/rs11010043
  • Wang, X., Xiao, X., Zou, Z., Chen, B., Ma, J., Dong, J., Doughty, R.B., Zhong, Q., Qin, Y., Dai, S., Li, X., Zhao, B., Li, B., 2020. Tracking annual changes of coastal tidal flats in China during 1986โ€“2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987. https://doi.org/10.1016/j.rse.2018.11.030
  • Wu, Q., Lane, C.R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H.E., Lang, M.W., 2019. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 228, 1โ€“13. https://doi.org/10.1016/j.rse.2019.04.015
  • Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. https://doi.org/10.3390/rs12223758

Land Cover

  • Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., ... & Tait, A. M. (2022). Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, 9(1), 1-17. https://doi.org/10.1038/s41597-022-01307-4
  • Carrasco, L., Oโ€™Neil, A.W., Morton, R.D., Rowland, C.S., 2019. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sensing 11, 288. https://doi.org/10.3390/rs11030288
  • Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science 342, 850โ€“853. https://doi.org/10.1126/science.1244693
  • Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., Zhu, Z., 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 202, 166โ€“176. https://doi.org/10.1016/j.rse.2017.02.021
  • Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., Liang, S., 2020. Annual Dynamics of Global Land Cover and its Long-term Changes from 1982 to 2015. Earth Syst. Sci. Data. 12, 1217โ€“1243. https://doi.org/10.5194/essd-12-1217-2020

Disaster Management

  • DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J.W., Lang, M.W., 2020. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 240, 111664. https://doi.org/10.1016/j.rse.2020.111664
  • Liu, C.-C., Shieh, M.-C., Ke, M.-S., Wang, K.-H., 2018. Flood Prevention and Emergency Response System Powered by Google Earth Engine. Remote Sensing 10, 1283. https://doi.org/10.3390/rs10081283
  • Tellman, B., Sullivan, J.A., Kuhn, C., Kettner, A.J., Doyle, C.S., Brakenridge, G.R., Erickson, T.A., Slayback, D.A., 2021. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80โ€“86. https://doi.org/10.1038/s41586-021-03695-w

Coastal

  • Vos, K., Splinter, K.D., Harley, M.D., Simmons, J.A., Turner, I.L., 2019. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery Environmental Modelling and Software. 122, 104528. https://doi.org/10.1016/j.envsoft.2019.104528

Contributing

Contributions welcome! Read the contribution guidelines first.

License

CC0

To the extent possible under law, Qiusheng Wu has waived all copyright and related or neighboring rights to this work.

More Repositories

1

leafmap

A Python package for interactive mapping and geospatial analysis with minimal coding in a Jupyter environment
Python
1,312
star
2

earthengine-py-notebooks

A collection of 360+ Jupyter Python notebook examples for using Google Earth Engine with interactive mapping
Jupyter Notebook
1,213
star
3

qgis-earthengine-examples

A collection of 300+ Python examples for using Google Earth Engine in QGIS
Python
800
star
4

streamlit-geospatial

A multi-page streamlit app for geospatial
Python
586
star
5

python-geospatial

A collection of Python packages for geospatial analysis with binder-ready notebook examples
Shell
564
star
6

geospatial-data-catalogs

A list of open geospatial datasets available on AWS, Earth Engine, Planetary Computer, NASA CMR, and STAC Index
Jupyter Notebook
380
star
7

whitebox-python

WhiteboxTools Python Frontend
Python
315
star
8

aws-open-data-geo

A list of open geospatial datasets on AWS
Python
239
star
9

geospatial

A Python package for installing commonly used packages for geospatial analysis and data visualization with only one command.
Python
205
star
10

WhiteboxTools-ArcGIS

ArcGIS Python Toolbox for WhiteboxTools
Python
196
star
11

geog-312

Introduction to GIS Programming
Jupyter Notebook
179
star
12

lidar

A Python package for delineating nested surface depressions from digital elevation data.
Python
173
star
13

mapwidget

Custom Jupyter widgets for creating interactive 2D/3D maps using popular JavaScript libraries with bidirectional communication, such as Cesium, Mapbox, MapLibre, Leaflet, and OpenLayers
Python
151
star
14

whiteboxR

WhiteboxTools R Frontend
R
147
star
15

geebook

Geospatial Data Science with Earth Engine and Geemap
Jupyter Notebook
114
star
16

geospatial-ml

A Python package for installing commonly used packages for geospatial analysis and machine learning with only one command.
Python
111
star
17

whiteboxgui

An interactive GUI for WhiteboxTools in a Jupyter-based environment
Python
108
star
18

earthengine-py-examples

A collection of 300+ examples for using Earth Engine and the geemap Python package
Python
103
star
19

streamlit-timeline

Streamlit component for rendering vis.js timeline
Python
96
star
20

geog-414

A repo for GEOG-414 (Spatial Data Management) at the University of Tennessee
HTML
89
star
21

manjaro-linux

Shell scripts for setting up Manjaro Linux for Python programming and deep learning
Shell
88
star
22

GEE-Courses

A collection of Jupyter notebooks for GEE Courses
84
star
23

streamlit-template

A streamlit app template based on streamlit-option-menu
Python
64
star
24

streamlit-multipage-template

A streamlit multipage app template for geospatial applications
Python
60
star
25

maxar-open-data

The Maxar Open Data STAC Catalog in CSV, GeoJSON, and MosaicJSON formats
Python
58
star
26

Wetland-Hydro-GEE

Mapping wetland hydrological dynamics using Google Earth Engine (GEE)
JavaScript
50
star
27

leafmap-book

Geospatial Data Science with Leafmap
Jupyter Notebook
45
star
28

gee-tutorials

Google Earth Engine tutorials
Jupyter Notebook
39
star
29

geemap-apps

Interactive web apps created using geemap and streamlit
Python
33
star
30

postgis

Spatial Data Management with PostgreSQL and PostGIS https://gishub.org/sdm
Jupyter Notebook
32
star
31

leafmap-apps

Interactive web apps created using leafmap and streamlit
Python
32
star
32

giswqs

30
star
33

giswqs-bk

30
star
34

Learning-R

R Tutorials
R
29
star
35

geehydro

A Python package for mapping inundation dynamics using Google Earth Engine
Python
27
star
36

eefolium

A lightweight Python package for interactive mapping with Earth Engine and folium
Python
24
star
37

earthengine-apps

A collection of Earth Engine Apps created using geemap and voila
Jupyter Notebook
23
star
38

geemap-heroku

Python scripts for deploying Earth Engine Apps to heroku
Jupyter Notebook
22
star
39

whitebox-frontends

WhiteboxTools Frontends
20
star
40

geodemo

A Python package for interactive mapping
Python
19
star
41

aws-open-data

A list of open datasets on AWS
Python
17
star
42

leafmap-streamlit

Publishing interactive web apps using leafmap and streamlit
Python
17
star
43

geog-414-fall2022

Spatial Data Management with Google Earth Engine
Jupyter Notebook
17
star
44

data

Some commonly used geospatial datasets
Jupyter Notebook
16
star
45

gh-pages-html-template

A simple template for deploying an HTML website to GitHub Pages
HTML
16
star
46

streamlit-mapbox

A Streamlit Component for rendering Mapbox GL JS
Python
14
star
47

mkdocs-template

A template for building a mkdocs website
14
star
48

geospatial-apps

A collection of streamlit web apps for geospatial applications
Python
14
star
49

notebook-share

A repo for sharing notebooks
13
star
50

aws-open-data-stac

A list of STAC endpoints for the AWS Open Data Program
Python
12
star
51

global-surface-water

A streamlit web app for mapping global surface water
Python
12
star
52

streamlit-water

A streamlit web app visualizing global surface water datasets.
Python
12
star
53

GEOG-503

Programming in GIS (GEOG-503)
Jupyter Notebook
11
star
54

wetland

Mapping surface water and wetland hydrological dynamics using Google Earth Engine
Python
11
star
55

geemap-streamlit

geemap with streamlit
Python
11
star
56

streamlit-leaflet

A Streamlit component for rendering leaflet maps
Python
10
star
57

leafmap-jupyterlite

Leafmap for Jupyterlite
Jupyter Notebook
10
star
58

giswqs.github.io-bk

Public website
CSS
10
star
59

Depression-Analysis-Toolbox

An ArcGIS toolbox for identifying nested depressions in digital elevation models (DEMs)
Python
10
star
60

leafmaptools

A Python package for building a tool widgets infrastructure with ipyleaflet and ipywidgets
Python
10
star
61

GeoPython-Twitter-Bot

A Twitter Bot for GeoPython
JavaScript
10
star
62

NASA-CMR-STAC

A list of geospatial datasets on NASA's Common Metadata Repository (CMR)
Jupyter Notebook
9
star
63

streamlit-google-sheet

A streamlit web app for connecting Streamlit to a public Google Sheet
Python
9
star
64

sysu-workshop

This repo hosts materials for my workshop given at Sun Yat-sen University during July 19-21, 2017
HTML
9
star
65

GIS-Info.github.io

GIS็•™ๅญฆ๏ผšๅญฆๆ กไธŽ้กน็›ฎๆŒ‡ๅ— | GIS Study Abroad: Universities and Projects Guide
9
star
66

geemap-tutorials

Interactive geemap tutorials on heroku
Jupyter Notebook
9
star
67

geog-312-fall2019

First Steps in GIS Programming
HTML
8
star
68

geospatial-notebooks

A collection of Jupyter notebooks for geospatial applications
8
star
69

earthengine-js-examples

Google Earth Engine JavaScript Examples
JavaScript
8
star
70

Wetland-Hydrology-Analyst-Toolbox

An ArcGIS toolbox for wetland hydrology
Python
8
star
71

geog-312-2021

First Steps in GIS Programming (GEOG 312) at the University of Tennessee, Knoxville
Jupyter Notebook
8
star
72

Learning-Python

Python notebooks
Python
8
star
73

streamlit-raster

A Python package for rendering raster datasets with streamlit and localtileserver
Python
8
star
74

scholarpy

A Python package for searching journal publications and researchers
Python
8
star
75

dem-depression-level-set-method

Delineating nested hierarchy of topographic depressions in digital elevation models (DEMs) using level set methods
Python
8
star
76

streamlit-maps

A steamlit app for mapping applications
Python
7
star
77

geemap-ai-docker

AI Platform Deep Learning VM Image with geemap
Jupyter Notebook
7
star
78

Planetary-Computer-Catalog

The Microsoft Planetary Computer Catalog in CSV format
Python
7
star
79

stac-index-catalogs

A list of STAC endpoints retrieved from https://stacindex.org
Jupyter Notebook
7
star
80

geebook-code

Jupyter notebooks for the GEE book
7
star
81

earthengine-py-documentation

Unofficial Google Earth Engine Python Documentation
Jupyter Notebook
6
star
82

Earth-Engine-Catalog

The Google Earth Engine data catalog in CSV format
Python
6
star
83

pyhydro

A Python package for modeling fill-spill hydrology in depression-dominated landscapes
Python
6
star
84

Learning-SciPy

Learning SciPy for Numerical and Scientific Computing
Jupyter Notebook
6
star
85

streamlit-demo

Streamlit demos for geospatial
Python
6
star
86

geosdemo

A Python package demo for interactive mapping
Python
6
star
87

Earth-Engine-Python

Earth Engine Python Examples
Python
5
star
88

geoscale

Python library for scale-based spatial analysis
Python
5
star
89

richdem-binder

Binder for the richdem Python package
5
star
90

timelapse

An interactive streamlit web app for creating satellite timelapse
Python
5
star
91

plotly-dash-template

A template for deploying a plotly dash app on Heroku
Python
4
star
92

streamlit-cartopy

A streamlit web app for hurricane mapping
Python
4
star
93

Earth-Engine-Twitter-Bot

A Twitter Bot for #EarthEngine
JavaScript
4
star
94

streamlit-app-template

A multi-page streamlit web app template for geospatial applications
Python
4
star
95

Crime-Analysis

Crime analysis using R and Python
HTML
4
star
96

streamlit-timeline-demo

Streamlit component for rendering vis.js timeline
Python
4
star
97

GEOG-510

A test repo for GEOG-510
4
star
98

streamlit-tnview

A streamlit application for TennesseeView
Python
3
star
99

Python-books

Python
3
star
100

whitebox-r-binder

Binder for the whitebox R package
Jupyter Notebook
3
star