There are no reviews yet. Be the first to send feedback to the community and the maintainers!
tsdecrypt ========= tsdecrypt reads incoming mpeg transport stream over UDP/RTP and then decrypts it using code words obtained from OSCAM or similar cam server. tsdecrypt communicates with CAM server using cs378x (camd35 over tcp) protocol or newcamd protocol. License ======= tsdecrypt is released under GNU GPL v2. Dependencies ============ tsdecrypt depends on openssl. It uses rand, MD5, DES and AES functions. You probably already have openssl installed. If you are seeing compilation errors related to missing openssl headers you should install openssl development package using 'sudo yum install openssl-dev' or 'sudo apt-get install libssl-dev' or similar command depending on your Linux distribution. If you are not using shipped FFdecsa then the other tsdecrypt dependency is libdvbcsa. libdvbcsa can be downloaded from https://www.videolan.org/developers/libdvbcsa.html FFdecsa vs libdvbcsa ==================== tsdecrypt supports two different CSA decryption libraries. libdvbcsa is an external library from VideoLAN project released under LGPL, FFdecsa is shipped with tsdecrypt. libdvbcsa ========= libdvbcsa is better tested and have served tsdcrypt for a long time so it is still the default decryption library. Also it is faster with file input. To compile tsdecrypt with libdvbcsa run 'make' or if you have tested FFdecsa compilation and want to switch to libdvbcsa run 'make dvbcsa'. 'make distclean' switches decryption library back to libdvbcsa. FFdecsa ======= FFdecsa support was added after tsdecrypt v7.0. FFdecsa can be up to 40% faster than libdvbcsa especially on 32-bit hardware. If you want to use FFDecsa you have to run 'make ffdecsa'. The setup script will test which FFDecsa algorithm is the fastest for your CPU and will configure tsdecrypt compilation to stop using libdvbcsa. Most likely the script will choose PARALLEL_128_SSE or PARALLEL_128_SSE2. Once the script have finished it stores its decision in FFdecsa.opts file and as long as this file exists tsdecrypt will be compiled with FFdecsa. You can force regeneration by deleting running 'make ffdecsa_force' or 'make distclean ffdecsa'. FFDecsa is considerably slower than libdvbcsa when tsdecrypt's input is a file or stdin (single packet decryption mode). If you are decrypting already recorded files you are better of using libdvbcsa. When tsdecrypt is run it reports which decryption library is used in its version string. You can use --bench option to test decryption speed. Development =========== The development is done using git. tsdecrypt repository is hosted at https://georgi.unixsol.org/git/gfto/tsdecrypt To clone the repository issue the following commands: git clone https://georgi.unixsol.org/gfto/tsdecrypt.git cd tsdecrypt git submodule init git submodule update make The code is developed and tested under modern Linux. It is also compiled from time to time under OS X but is not tested there. To see all Makefile targets run 'make help'. Updating the code ================= To update cloned tsdecrypt, go to the directory where the repository is cloned and run the following commands: git fetch origin git merge origin/master git submodule update make clean all tsdecrypt's master branch should always be useful so it is safe to use it instead of official release. The master branch will always be better than any released version. Command line parameters ======================= tsdecrypt is controlled using command line parameters. For more information about the parameters see the man page. Here is a list of supported command line parameters: Main options: -i --ident <server> | Format PROVIDER/CHANNEL. Default: empty -d --daemon <pidfile> | Daemonize program and write pid file. -N --notify-program <prg> | Execute <prg> to report events. Default: empty -9 --notify-wait | Enable one by one notification delivery. . Default: not set (async, deliver ASAP) -0 --status-file <file> | Save current program status in file. Input options: -I --input <source> | Where to read from. File or multicast address. . -I 224.0.0.1:5000 (v4 multicast) . -I [ff01::1111]:5000 (v6 multicast) . -I file://in.ts (read from file) . By default the input is stdin. -1 --input-source <ipaddr> | Set multicast input source ip. -R --input-rtp | Enable RTP input -z --input-ignore-disc | Do not report discontinuty errors in input. -M --input-service <srvid> | Choose service id when input is MPTS. -T --input-buffer <ms> | Set input buffer time in ms. Default: 0 -W --input-dump <filename> | Save input stream in file. Output options: -O --output <dest> | Where to send output. File or multicast address. . -O 239.0.0.1:5000 (v4 multicast) . -O [ff01::2222]:5000 (v6 multicast) . -O file://out.ts (write to file) . By default the output is stdout. -o --output-intf <value> | Set multicast output interface. . Default for IPv4: 0.0.0.0 (intf addr) . Default for IPv6: -1 (intf number) -t --output-ttl <ttl> | Set multicast ttl. Default: 1 -r --output-rtp | Enable RTP output. -k --output-rtp-ssrc <id> | Set RTP SSRC. Default: 0 -g --output-tos <tos> | Set TOS value of output packets. Default: none -u --no-output-on-error | Do not output data when the code word is missing. -p --no-output-filter | Disable output filtering. Default: enabled -3 --output-enc-pass | Output the stream even if can not be decrypted. -y --output-nit-pass | Pass through NIT. -w --output-eit-pass | Pass through EIT (EPG). -x --output-tdt-pass | Pass through TDT/TOT. CA options: -c --ca-system <ca_sys> | Process input EMM/ECM from <ca_sys>. | Valid systems are: CONAX (default), CRYPTOWORKS, . IRDETO, SECA (MEDIAGUARD), VIACCESS, . VIDEOGUARD (NDS), NAGRA, DRECRYPT, BULCRYPT, . GRIFFIN and DGCRYPT. -C --caid <caid> | Set CAID. Default: Taken from --ca-system. -Y --const-cw <codeword> | Set constant code word for decryption. . Example cw: a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8 -Q --biss-key <biss-key> | Set BISS key for decryption. . Example key: 112233445566 CAMD server options: -A --camd-proto <proto> | Set CAMD network protocol. . Valid protocols are: CS378X (default) and NEWCAMD -s --camd-server <host> | Set CAMD server address. Default port: 2233 . Example IPv4 addr and port: 127.0.0.1:2233 . Example IPv6 addr and port: [2a00::1014]:2233 . Example hostname : example.com . Example hostname and port : example.com:2233 . Example IPv4 hostname : ipv4.google.com . Example IPv6 hostname : ipv6.google.com -U --camd-user <user> | Set CAMD server user. Default: user -P --camd-pass <pass> | Set CAMD server password. Default: pass -B --camd-des-key <key> | Set DES key for newcamd protocol. . Default: 0102030405060708091011121314 -4 --ipv4 | Use only IPv4 addresses of the camd server. -6 --ipv6 | Use only IPv6 addresses of the camd server. EMM options: -e --emm | Enable sending EMM's to CAMD. Default: disabled -E --emm-only | Send only EMMs to CAMD, skipping ECMs and without . decoding the input stream. -Z --emm-pid <pid> | Force EMM pid. Default: none -f --emm-report-time <sec> | Report each <sec> seconds how much EMMs have been . received/processed. Set <sec> to 0 to disable . the reports. Default: 60 sec -a --emm-filter <filter> | Add EMM filter defined by <filter>. . This option can be used multiple times (max:16). . See FILTERING file for more info. ECM options: -X --ecm-pid <pid> | Force ECM pid. Default: none -v --ecm-only | Send only ECMs to CAMD, skipping EMMs and without . decoding the input stream. -H --ecm-report-time <sec> | Report each <sec> how much ECMs and CWs have been . processed/skipped. Set <sec> to 0 to disable . the reports. Default: 60 sec -G --ecm-irdeto-type <int> | Process IRDETO ECMs with index X /0-255/ . It is better to use --ecm-irdeto-chid option! -2 --ecm-irdeto-chid <int> | Set CHID to filter Irdeto ECMs (Default: 0x0000). -K --ecm-no-log | Disable ECM and code words logging. -J --cw-warn-time <sec> | Warn if no valid code word has been received. . Set <sec> to 0 to disable. Default: 60 sec -q --ecm-and-emm-only | Send ECMs and EMMs to CAMD but do not decode . the input stream. Logging options: -S --syslog | Log messages using syslog. -l --syslog-host <host> | Syslog server address. Default: disabled -L --syslog-port <port> | Syslog server port. Default: 514 -F --log-file <filename> | Log to file <filename>. -D --debug <level> | Message debug level. . 0 = default messages . 1 = show PSI tables . 2 = show EMMs . 3 = show duplicate ECMs . 4 = packet debug . 5 = packet debug + packet dump Debugging options: -n --ecm-file <file.txt> | Read ECM from text file. -m --emm-file <file.txt> | Read EMM from text file. Misc options: -j --pid-report | Report how much packets were received. -b --bench | Benchmark decrypton. -h --help | Show help screen. -V --version | Show program version. Examples ======== To get a quick start here are some example command lines. The default CA system is set to CONAX, you can change it using --ca-system parameter, see man page or program help for more options. Examples: # Decrypt multicast stream from 239.0.50.11:5000 using 10.0.1.1:2233 # as camd server and output decrypted result to 239.78.78.78:5000 tsdecrypt --camd-server 10.0.1.1 \ --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Same as above but enable EMM processing tsdecrypt --emm --camd-server 10.0.1.1:2233 \ --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Same as above but do not filter output stream thus allowing # EIT/TOT/NIT, etc tables to passthrough tsdecrypt --no-output-filter --emm --camd-server 10.0.1.1 \ --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Choose program/service_id to decrypt. Useful when the input is MPTS tsdecrypt --camd-server 10.0.1.1 --input-service 1234 \ --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Read stream over RTP and process VIACCESS encoded channel tsdecrypt --ca-system VIACCESS --emm --camd-server 10.0.1.1:2233 \ --input-rtp --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Decrypt stream encypted with CAID 0x0963 (NDS, sky) tsdecrypt --camd-server 10.0.1.1 --ca-system NDS --caid 0x0963 \ --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Send only EMMs to OSCAM for CAID 0x0963 (NDS, sky) tsdecrypt --camd-server 10.0.1.1 --emm-only --caid 0x0963 \ --input 239.0.50.11:5000 --output /dev/null # Decrypt stream encypted with CAID 0x5581 (Bulcrypt) tsdecrypt --camd-server 10.0.1.1 --caid 0x5581 \ --input 239.0.50.11:5000 --output 239.78.78.78:5000 # Decrypt BISS encrypted stream tsdecrypt --biss-key 0x112233445566 --input 239.0.50.11:5000 \ --output 239.78.78.78:5000 # Decrypt file encypted with constant code word tsdecrypt --const-cw 0x00000000000000001111111111111111 \ --input encrypted-file.ts --output file://decrypted-file.ts # Send ECM from file tsdecrypt --ecm-file ecm.txt --caid 0x5581 --input-service 12345 \ --camd-server example.com # Decrypt IRDETO stream from Raduga (CHID == 0x0015) tsdecrypt --input 239.0.50.11:5000 --output 239.78.78.78:5000 \ --camd-server example.com \ --ca-system IRDETO --caid 0x0652 --ecm-irdeto-chid 0x0015 OSCAM cs378x configuration ========================== In order for tsdecrypt to communicate with OSCAM using cs378x (camd35 over tcp) protocol you can use configuration like the examples bellow. # Example oscam.user file: [account] user = user pwd = pass group = 1 au = 1 uniq = 0 monlevel = 4 # Example part of oscam.conf file: [cs378x] port = 2233 OSCAM newcamd configuration =========================== In order for tsdecrypt to communicate with OSCAM using newcamd protocol you can use configuration like the examples bellow. # Example oscam.user file [account] user = user pwd = pass group = 1 au = 1 uniq = 0 monlevel = 4 ident = 0604:000000 caid = 0604 # Example part of oscam.conf file: [newcamd] port = 1122@0604:000000 serverip = 0.0.0.0 key = 0102030405060708091011121314 The above example allows tsdecrypt clients using newcamd to retrive keys from OSCAM serving CAID 0x0604 (Irdeto) on port 1122. Reporting bugs ============== If you think you have found bug in tsdecrypt, please report it to the e-mail listed in Contact section (see below) of this README file. When reporting bugs, please send the contents of tsdecrypt.log file generated by using the following command (fill in **YOUR_OPTIONS**): tsdecrypt --debug 1 --log-file tsdecrypt.log **YOUR_OPTIONS** Also write the full command line which you used and describe what you think the tsdecrypt does wrong. One commonly seen error is not an error in tsdecrypt at all. You have to make sure that the software that streams channels from the DVB card is sending ECMs and EMMs along with other streams. If these streams are missing you'll probably get the following messages from tsdecrypt: 2012-04-02 22:02:12 | ECM | Received 0 (0 dup) and processed 0 in 3 seconds. 2012-04-02 22:03:09 | CW | *ERR* No valid code word was received for 60 seconds! 2012-04-02 22:03:12 | ECM | Received 0 (0 dup) and processed 0 in 60 seconds. Please configure your software to stream ECMs and EMMs. For dvblast (version 2.0 and above) the correct options are --ecm-passthrough and --emm-passthrough. Note that dvblast 2.1 have broken ecm passthrough so use at least version 2.2. Releases ======== Official releases can be downloaded from tsdecrypt home page which is https://georgi.unixsol.org/programs/tsdecrypt/ Contact ======= For patches, bug reports, complaints and so on send e-mail to Georgi Chorbadzhiyski <[email protected]>
toybox
The goal of the Toybox project is to create simple implementations of all the important Linux command line utilities. This repo is mirror of the official git hosted @ https://github.com/landley/toybox It is synced with toybox repo every 6 hours. The development is done on the mailing list: <[email protected]>. Post patches there.oscam
OSCam is an Open Source Conditional Access Module software. This repo is mirror of oscam SVN and my development area. The repo is synced with Oscam SVN every six hours.dvblast
DVBlast is a simple and powerful MPEG-2/TS demux and streaming application. This repository is mirror of official repo at git://git.videolan.org/dvblast.git and my personal development tree.mptsd
mptsd receives mpegts streams from udp/multicast or http and combines them into one multiple program stream that is suitable for outputing to DVB-C modulator. It is tested with Dektec DTE-3114 Quad QAM Modulator and it is used in production in couple of small DVB-C networks.bitstream
biTStream is a set of C headers allowing a simpler access to binary structures such as specified by MPEG, DVB, IETF, etc. This repository is mirror of official repo at git://git.videolan.org/bitstream.git and my personal development tree.tomcast
tomcast reads mpeg transport streams over http or udp (multicast or unicast) and outputs them to chosen multicast group. Basically a simple http2multicast daemon designed to work 24/7.videohubctrl
videohubctrl can be used to control Blackmagic Design Videohub SDI router device over the network.tsdumper2
tsdumper2 reads incoming mpeg transport stream over UDP/RTP and then records it to disk. The files names are generated based on preconfigured time interval.libtsfuncs
libtsfuncs is a library for mpeg PSI parsing and generation.libfuncs
libfuncs is collection of code (list, queue, circular buffer, io, logging, etc.).slackcheck
SlackCheck allows users to keep many Slackware machines up to date with the latest packages. All upgrades are performed from single machine though SSH (or RSH). It generates an upgrade script and list of non-standard packages for every machine.fjfs
fjfs is FUSE module that implements virtual joining of multiple files as one.Love Open Source and this site? Check out how you can help us