• Stars
    star
    28
  • Rank 882,216 (Top 18 %)
  • Language
    Jupyter Notebook
  • Created over 5 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Model for predicting categories of entities by its mentions

Category prediction model

This repo contains AllenNLP model for prediction of Named Entity categories by its mentions.

Data

Fake data

You can generate some fake data using this Notebook

Real data (Work in progress)

Filtered OneShotWikilinks dataset with manually selected categories.

Data preparation steps

Prepare splitted data with:

!split -n l/10 --verbose ../data/fake_data_train.tsv ../data/fake_data_train.tsv_

Install

pip install -r requirements.txt

Run

Train

rm -rf ./data/vocabulary ; allennlp make-vocab -s ./data/ allen_conf_vocab.json --include-package category_prediction

allennlp train -f -s data/stats allen_conf.json --include-package category_prediction
allennlp train -f -s data/stats allen_conf.json --include-package category_prediction -o '{"trainer": {"cuda_device": 0}}'

Continue training with different params

rm -rf data/stats2/  # Clear new serialization dir
allennlp fine-tune -s data/stats2/ -c allen_conf.json -m ./data/stats/model.tar.gz --include-package category_prediction -o '{"trainer": {"cuda_device": 0}, "iterator": {"base_iterator": {"batch_size": 64}}}'

Validate

allennlp evaluate ./data/stats/model.tar.gz ./data/fake_data_test.tsv --include-package category_prediction

Server

Debug

MODEL=./data/trained_models/6th_augmented/model.tar.gz python run_server.py

Prod

gunicorn -c gunicorn_config.py wsgi:application

Docker

Build

cd docker
docker build --tag mention .

Run with passing pyenv into container

docker run --rm --restart unless-stopped -v $HOME:$HOME -p 8000:8000 \
        -v $HOME/.pyenv:/root/.pyenv \ 
        -e ENV_PATH=$HOME/virtualenv/path \
        -e APP_PATH=$HOME/project/root/path mention

GCE related notes

Fix 100% GPU utilization

sudo nvidia-smi -pm 1