• Stars
    star
    4
  • Rank 3,304,323 (Top 66 %)
  • Language
    Jupyter Notebook
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

In this paper we compare and evaluate two simple embedding models which can be constructed directly from a given co-occurrence matrix extracted from Twitter data; Positive Pointwise Mutual Information (PPMI), and Hellinger Principal Component Analysis (H-PCA). For each embedding model we consider three alternative metrics for word similarity: cosine, euclidean and manhattan distance.