• Stars
    star
    422
  • Rank 102,753 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

๐Ÿฆ‰ Modern high-performance serialization utilities for Python (JSON, MessagePack, Pickle)

srsly: Modern high-performance serialization utilities for Python

This package bundles some of the best Python serialization libraries into one standalone package, with a high-level API that makes it easy to write code that's correct across platforms and Pythons. This allows us to provide all the serialization utilities we need in a single binary wheel. Currently supports JSON, JSONL, MessagePack, Pickle and YAML.

tests PyPi conda GitHub Python wheels

Motivation

Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy had steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.

At the same time, we noticed that having a lot of small dependencies was making maintenance harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.

srsly currently includes forks of the following packages:

Installation

โš ๏ธ Note that v2.x is only compatible with Python 3.6+. For 2.7+ compatibility, use v1.x.

srsly can be installed from pip. Before installing, make sure that your pip, setuptools and wheel are up to date.

python -m pip install -U pip setuptools wheel
python -m pip install srsly

Or from conda via conda-forge:

conda install -c conda-forge srsly

Alternatively, you can also compile the library from source. You'll need to make sure that you have a development environment with a Python distribution including header files, a compiler (XCode command-line tools on macOS / OS X or Visual C++ build tools on Windows), pip and git installed.

Install from source:

# clone the repo
git clone https://github.com/explosion/srsly
cd srsly

# create a virtual environment
python -m venv .env
source .env/bin/activate

# update pip
python -m pip install -U pip setuptools wheel

# compile and install from source
python -m pip install .

For developers, install requirements separately and then install in editable mode without build isolation:

# install in editable mode
python -m pip install -r requirements.txt
python -m pip install --no-build-isolation --editable .

# run test suite
python -m pytest --pyargs srsly

API

JSON

๐Ÿ“ฆ The underlying module is exposed via srsly.ujson. However, we normally interact with it via the utility functions only.

function srsly.json_dumps

Serialize an object to a JSON string. Falls back to json if sort_keys=True is used (until it's fixed in ujson).

data = {"foo": "bar", "baz": 123}
json_string = srsly.json_dumps(data)
Argument Type Description
data - The JSON-serializable data to output.
indent int Number of spaces used to indent JSON. Defaults to 0.
sort_keys bool Sort dictionary keys. Defaults to False.
RETURNS str The serialized string.

function srsly.json_loads

Deserialize unicode or bytes to a Python object.

data = '{"foo": "bar", "baz": 123}'
obj = srsly.json_loads(data)
Argument Type Description
data str / bytes The data to deserialize.
RETURNS - The deserialized Python object.

function srsly.write_json

Create a JSON file and dump contents or write to standard output.

data = {"foo": "bar", "baz": 123}
srsly.write_json("/path/to/file.json", data)
Argument Type Description
path str / Path The file path or "-" to write to stdout.
data - The JSON-serializable data to output.
indent int Number of spaces used to indent JSON. Defaults to 2.

function srsly.read_json

Load JSON from a file or standard input.

data = srsly.read_json("/path/to/file.json")
Argument Type Description
path str / Path The file path or "-" to read from stdin.
RETURNS dict / list The loaded JSON content.

function srsly.write_gzip_json

Create a gzipped JSON file and dump contents.

data = {"foo": "bar", "baz": 123}
srsly.write_gzip_json("/path/to/file.json.gz", data)
Argument Type Description
path str / Path The file path.
data - The JSON-serializable data to output.
indent int Number of spaces used to indent JSON. Defaults to 2.

function srsly.write_gzip_jsonl

Create a gzipped JSONL file and dump contents.

data = [{"foo": "bar"}, {"baz": 123}]
srsly.write_gzip_json("/path/to/file.jsonl.gz", data)
Argument Type Description
path str / Path The file path.
lines - The JSON-serializable contents of each line.
append bool Whether or not to append to the location. Appending to .gz files is generally not recommended, as it doesn't allow the algorithm to take advantage of all data when compressing - files may hence be poorly compressed.
append_new_line bool Whether or not to write a new line before appending to the file.

function srsly.read_gzip_json

Load gzipped JSON from a file.

data = srsly.read_gzip_json("/path/to/file.json.gz")
Argument Type Description
path str / Path The file path.
RETURNS dict / list The loaded JSON content.

function srsly.read_gzip_jsonl

Load gzipped JSONL from a file.

data = srsly.read_gzip_jsonl("/path/to/file.jsonl.gz")
Argument Type Description
path str / Path The file path.
RETURNS dict / list The loaded JSONL content.

function srsly.write_jsonl

Create a JSONL file (newline-delimited JSON) and dump contents line by line, or write to standard output.

data = [{"foo": "bar"}, {"baz": 123}]
srsly.write_jsonl("/path/to/file.jsonl", data)
Argument Type Description
path str / Path The file path or "-" to write to stdout.
lines iterable The JSON-serializable lines.
append bool Append to an existing file. Will open it in "a" mode and insert a newline before writing lines. Defaults to False.
append_new_line bool Defines whether a new line should first be written when appending to an existing file. Defaults to True.

function srsly.read_jsonl

Read a JSONL file (newline-delimited JSON) or from JSONL data from standard input and yield contents line by line. Blank lines will always be skipped.

data = srsly.read_jsonl("/path/to/file.jsonl")
Argument Type Description
path str / Path The file path or "-" to read from stdin.
skip bool Skip broken lines and don't raise ValueError. Defaults to False.
YIELDS - The loaded JSON contents of each line.

function srsly.is_json_serializable

Check if a Python object is JSON-serializable.

assert srsly.is_json_serializable({"hello": "world"}) is True
assert srsly.is_json_serializable(lambda x: x) is False
Argument Type Description
obj - The object to check.
RETURNS bool Whether the object is JSON-serializable.

msgpack

๐Ÿ“ฆ The underlying module is exposed via srsly.msgpack. However, we normally interact with it via the utility functions only.

function srsly.msgpack_dumps

Serialize an object to a msgpack byte string.

data = {"foo": "bar", "baz": 123}
msg = srsly.msgpack_dumps(data)
Argument Type Description
data - The data to serialize.
RETURNS bytes The serialized bytes.

function srsly.msgpack_loads

Deserialize msgpack bytes to a Python object.

msg = b"\x82\xa3foo\xa3bar\xa3baz{"
data = srsly.msgpack_loads(msg)
Argument Type Description
data bytes The data to deserialize.
use_list bool Don't use tuples instead of lists. Can make deserialization slower. Defaults to True.
RETURNS - The deserialized Python object.

function srsly.write_msgpack

Create a msgpack file and dump contents.

data = {"foo": "bar", "baz": 123}
srsly.write_msgpack("/path/to/file.msg", data)
Argument Type Description
path str / Path The file path.
data - The data to serialize.

function srsly.read_msgpack

Load a msgpack file.

data = srsly.read_msgpack("/path/to/file.msg")
Argument Type Description
path str / Path The file path.
use_list bool Don't use tuples instead of lists. Can make deserialization slower. Defaults to True.
RETURNS - The loaded and deserialized content.

pickle

๐Ÿ“ฆ The underlying module is exposed via srsly.cloudpickle. However, we normally interact with it via the utility functions only.

function srsly.pickle_dumps

Serialize a Python object with pickle.

data = {"foo": "bar", "baz": 123}
pickled_data = srsly.pickle_dumps(data)
Argument Type Description
data - The object to serialize.
protocol int Protocol to use. -1 for highest. Defaults to None.
RETURNS bytes The serialized object.

function srsly.pickle_loads

Deserialize bytes with pickle.

pickled_data = b"\x80\x04\x95\x19\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x03foo\x94\x8c\x03bar\x94\x8c\x03baz\x94K{u."
data = srsly.pickle_loads(pickled_data)
Argument Type Description
data bytes The data to deserialize.
RETURNS - The deserialized Python object.

YAML

๐Ÿ“ฆ The underlying module is exposed via srsly.ruamel_yaml. However, we normally interact with it via the utility functions only.

function srsly.yaml_dumps

Serialize an object to a YAML string. See the ruamel.yaml docs for details on the indentation format.

data = {"foo": "bar", "baz": 123}
yaml_string = srsly.yaml_dumps(data)
Argument Type Description
data - The JSON-serializable data to output.
indent_mapping int Mapping indentation. Defaults to 2.
indent_sequence int Sequence indentation. Defaults to 4.
indent_offset int Indentation offset. Defaults to 2.
sort_keys bool Sort dictionary keys. Defaults to False.
RETURNS str The serialized string.

function srsly.yaml_loads

Deserialize unicode or a file object to a Python object.

data = 'foo: bar\nbaz: 123'
obj = srsly.yaml_loads(data)
Argument Type Description
data str / file The data to deserialize.
RETURNS - The deserialized Python object.

function srsly.write_yaml

Create a YAML file and dump contents or write to standard output.

data = {"foo": "bar", "baz": 123}
srsly.write_yaml("/path/to/file.yml", data)
Argument Type Description
path str / Path The file path or "-" to write to stdout.
data - The JSON-serializable data to output.
indent_mapping int Mapping indentation. Defaults to 2.
indent_sequence int Sequence indentation. Defaults to 4.
indent_offset int Indentation offset. Defaults to 2.
sort_keys bool Sort dictionary keys. Defaults to False.

function srsly.read_yaml

Load YAML from a file or standard input.

data = srsly.read_yaml("/path/to/file.yml")
Argument Type Description
path str / Path The file path or "-" to read from stdin.
RETURNS dict / list The loaded YAML content.

function srsly.is_yaml_serializable

Check if a Python object is YAML-serializable.

assert srsly.is_yaml_serializable({"hello": "world"}) is True
assert srsly.is_yaml_serializable(lambda x: x) is False
Argument Type Description
obj - The object to check.
RETURNS bool Whether the object is YAML-serializable.

More Repositories

1

spaCy

๐Ÿ’ซ Industrial-strength Natural Language Processing (NLP) in Python
Python
29,546
star
2

thinc

๐Ÿ”ฎ A refreshing functional take on deep learning, compatible with your favorite libraries
Python
2,813
star
3

spacy-course

๐Ÿ‘ฉโ€๐Ÿซ Advanced NLP with spaCy: A free online course
Python
2,299
star
4

sense2vec

๐Ÿฆ† Contextually-keyed word vectors
Python
1,615
star
5

spacy-models

๐Ÿ’ซ Models for the spaCy Natural Language Processing (NLP) library
Python
1,589
star
6

spacy-transformers

๐Ÿ›ธ Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
Python
1,334
star
7

projects

๐Ÿช End-to-end NLP workflows from prototype to production
Python
1,285
star
8

spacy-llm

๐Ÿฆ™ Integrating LLMs into structured NLP pipelines
Python
1,049
star
9

curated-transformers

๐Ÿค– A PyTorch library of curated Transformer models and their composable components
Python
858
star
10

spacy-streamlit

๐Ÿ‘‘ spaCy building blocks and visualizers for Streamlit apps
Python
787
star
11

spacy-stanza

๐Ÿ’ฅ Use the latest Stanza (StanfordNLP) research models directly in spaCy
Python
722
star
12

prodigy-recipes

๐Ÿณ Recipes for the Prodigy, our fully scriptable annotation tool
Jupyter Notebook
477
star
13

wasabi

๐Ÿฃ A lightweight console printing and formatting toolkit
Python
444
star
14

cymem

๐Ÿ’ฅ Cython memory pool for RAII-style memory management
Cython
436
star
15

displacy

๐Ÿ’ฅ displaCy.js: An open-source NLP visualiser for the modern web
JavaScript
343
star
16

lightnet

๐ŸŒ“ Bringing pjreddie's DarkNet out of the shadows #yolo
C
319
star
17

prodigy-openai-recipes

โœจ Bootstrap annotation with zero- & few-shot learning via OpenAI GPT-3
Python
318
star
18

spacy-notebooks

๐Ÿ’ซ Jupyter notebooks for spaCy examples and tutorials
Jupyter Notebook
285
star
19

spacy-services

๐Ÿ’ซ REST microservices for various spaCy-related tasks
Python
240
star
20

cython-blis

๐Ÿ’ฅ Fast matrix-multiplication as a self-contained Python library โ€“ no system dependencies!
C
215
star
21

displacy-ent

๐Ÿ’ฅ displaCy-ent.js: An open-source named entity visualiser for the modern web
CSS
197
star
22

jupyterlab-prodigy

๐Ÿงฌ A JupyterLab extension for annotating data with Prodigy
TypeScript
188
star
23

spacymoji

๐Ÿ’™ Emoji handling and meta data for spaCy with custom extension attributes
Python
180
star
24

tokenizations

Robust and Fast tokenizations alignment library for Rust and Python https://tamuhey.github.io/tokenizations/
Rust
180
star
25

wheelwright

๐ŸŽก Automated build repo for Python wheels and source packages
Python
174
star
26

catalogue

Super lightweight function registries for your library
Python
171
star
27

confection

๐Ÿฌ Confection: the sweetest config system for Python
Python
169
star
28

spacy-dev-resources

๐Ÿ’ซ Scripts, tools and resources for developing spaCy
Python
125
star
29

radicli

๐Ÿ•Š๏ธ Radically lightweight command-line interfaces
Python
100
star
30

spacy-lookups-data

๐Ÿ“‚ Additional lookup tables and data resources for spaCy
Python
98
star
31

spacy-experimental

๐Ÿงช Cutting-edge experimental spaCy components and features
Python
94
star
32

talks

๐Ÿ’ฅ Browser-based slides or PDFs of our talks and presentations
JavaScript
94
star
33

thinc-apple-ops

๐Ÿ Make Thinc faster on macOS by calling into Apple's native Accelerate library
Cython
90
star
34

healthsea

Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.
Python
87
star
35

preshed

๐Ÿ’ฅ Cython hash tables that assume keys are pre-hashed
Cython
82
star
36

weasel

๐Ÿฆฆ weasel: A small and easy workflow system
Python
62
star
37

spacy-huggingface-pipelines

๐Ÿ’ฅ Use Hugging Face text and token classification pipelines directly in spaCy
Python
61
star
38

spacy-ray

โ˜„๏ธ Parallel and distributed training with spaCy and Ray
Python
54
star
39

ml-datasets

๐ŸŒŠ Machine learning dataset loaders for testing and example scripts
Python
45
star
40

murmurhash

๐Ÿ’ฅ Cython bindings for MurmurHash2
C++
44
star
41

assets

๐Ÿ’ฅ Explosion Assets
43
star
42

spacy-huggingface-hub

๐Ÿค— Push your spaCy pipelines to the Hugging Face Hub
Python
42
star
43

wikid

Generate a SQLite database from Wikipedia & Wikidata dumps.
Python
30
star
44

vscode-prodigy

๐Ÿงฌ A VS Code extension for annotating data with Prodigy
TypeScript
30
star
45

spacy-alignments

๐Ÿ’ซ A spaCy package for Yohei Tamura's Rust tokenizations library
Python
26
star
46

spacy-vscode

spaCy extension for Visual Studio Code
Python
24
star
47

spacy-curated-transformers

spaCy entry points for Curated Transformers
Python
22
star
48

spacy-benchmarks

๐Ÿ’ซ Runtime performance comparison of spaCy against other NLP libraries
Python
20
star
49

prodigy-hf

Train huggingface models on top of Prodigy annotations
Python
19
star
50

prodigy-pdf

A Prodigy plugin for PDF annotation
Python
18
star
51

spacy-vectors-builder

๐ŸŒธ Train floret vectors
Python
17
star
52

os-signpost

Wrapper for the macOS signpost API
Cython
12
star
53

spacy-loggers

๐Ÿ“Ÿ Logging utilities for spaCy
Python
12
star
54

prodigy-evaluate

๐Ÿ”Ž A Prodigy plugin for evaluating spaCy pipelines
Python
12
star
55

prodigy-segment

Select pixels in Prodigy via Facebook's Segment-Anything model.
Python
11
star
56

curated-tokenizers

Lightweight piece tokenization library
Cython
11
star
57

conll-2012

A slightly cleaned up version of the scripts & data for the CoNLL 2012 Coreference task.
Python
10
star
58

thinc_gpu_ops

๐Ÿ”ฎ GPU kernels for Thinc
C++
9
star
59

prodigy-ann

A Prodigy pluging for ANN techniques
Python
4
star
60

prodigy-whisper

Audio transcription with OpenAI's whisper model in the loop.
Python
4
star
61

princetondh

Code for our presentation in Princeton DH 2023 April.
Jupyter Notebook
4
star
62

spacy-legacy

๐Ÿ•ธ๏ธ Legacy architectures and other registered spaCy v3.x functions for backwards-compatibility
Python
4
star
63

ec2buildwheel

Python
2
star
64

aiGrunn-2023

Materials for the aiGrunn 2023 talk on spaCy Transformer pipelines
Python
1
star
65

spacy-io-binder

๐Ÿ“’ Repository used to build Binder images for the interactive spaCy code examples
Jupyter Notebook
1
star
66

prodigy-lunr

A Prodigy plugin for document search via LUNR
Python
1
star
67

.github

:octocat: GitHub settings
1
star
68

span-labeling-datasets

Loaders for various span labeling datasets
Python
1
star
69

spacy-biaffine-parser

Python
1
star