• Stars
    star
    477
  • Rank 92,112 (Top 2 %)
  • Language
    Jupyter Notebook
  • Created almost 7 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

๐Ÿณ Recipes for the Prodigy, our fully scriptable annotation tool

Prodigy Recipes

This repository contains a collection of recipes for Prodigy, our scriptable annotation tool for text, images and other data. In order to use this repo, you'll need a license for Prodigy โ€“ see this page for more details. For questions and bug reports, please use the Prodigy Support Forum. If you've found a mistake or bug, feel free to submit a pull request.

โœจ Important note: The recipes in this repository aren't 100% identical to the built-in recipes shipped with Prodigy. They've been edited to include comments and more information, and some of them have been simplified to make it easier to follow what's going on, and to use them as the basis for a custom recipe.

๐Ÿ“‹ Usage

Once Prodigy is installed, you should be able to run the prodigy command from your terminal, either directly or via python -m:

python -m prodigy

The prodigy command lists the built-in recipes. To use a custom recipe script, simply pass the path to the file using the -F argument:

python -m prodigy ner.teach your_dataset en_core_web_sm ./data.jsonl --label PERSON -F prodigy-recipes/ner/ner_teach.py

You can also use the --help flag for an overview of the available arguments of a recipe, e.g. prodigy ner.teach -F ner_teach_.py --help.

Some things to try

You can edit the code in the recipe script to customize how Prodigy behaves.

  • Try replacing prefer_uncertain() with prefer_high_scores().
  • Try writing a custom sorting function. It just needs to be a generator that yields a sequence of example dicts, given a sequence of (score, example) tuples.
  • Try adding a filter that drops some questions from the stream. For instance, try writing a filter that only asks you questions where the entity is two words long.
  • Try customizing the update() callback, to include extra logging or extra functionality.

๐Ÿณ Recipes

Named Entity Recognition

Recipe Description
ner.teach Collect the best possible training data for a named entity recognition model with the model in the loop. Based on your annotations, Prodigy will decide which questions to ask next.
ner.match Suggest phrases that match a given patterns file, and mark whether they are examples of the entity you're interested in. The patterns file can include exact strings or token patterns for use with spaCy's Matcher.
ner.manual Mark spans manually by token. Requires only a tokenizer and no entity recognizer, and doesn't do any active learning. Optionally, pre-highlight spans based on patterns.
ner.fuzzy_manual Like ner.manual but use FuzzyMatcher from spaczz library to pre-highlight candidates.
ner.manual.bert Use BERT word piece tokenizer for efficient manual NER annotation for transformer models.
ner.correct Create gold-standard data by correcting a model's predictions manually. This recipe used to be called ner.make_gold.
ner.silver-to-gold Take an existing "silver" dataset with binary accept/reject annotations, merge the annotations to find the best possible analysis given the constraints defined in the annotations, and manually edit it to create a perfect and complete "gold" dataset.
ner.eval_ab Evaluate two NER models by comparing their predictions and building an evaluation set from the stream.
ner_fuzzy_manual Mark spans manually by token with suggestions from spaczz fuzzy matcher pre-highlighted.

Text Classification

Recipe Description
textcat.manual Manually annotate categories that apply to a text. Supports annotation tasks with single and multiple labels. Multiple labels can optionally be flagged as exclusive.
textcat.correct Correct the textcat model's predictions manually. Predictions above the acceptance threshold will be automatically preselected (0.5 by default). Prodigy will infer whether the categories should be mutualy exclusive based on the component configuration.
textcat.teach Collect the best possible training data for a text classification model with the model in the loop. Based on your annotations, Prodigy will decide which questions to ask next.
textcat.custom-model Use active learning-powered text classification with a custom model. To demonstrate how it works, this demo recipe uses a simple dummy model that "predicts" random scores. But you can swap it out for any model of your choice, for example a text classification model implementation using PyTorch, TensorFlow or scikit-learn.

Terminology

Recipe Description
terms.teach Bootstrap a terminology list with word vectors and seeds terms. Prodigy will suggest similar terms based on the word vectors, and update the target vector accordingly.

Image

Recipe Description
image.manual Manually annotate images by drawing rectangular bounding boxes or polygon shapes on the image.
image-caption Annotate images with captions, pre-populate captions with image captioning model implemented in PyTorch and perform error analysis.
image.frozenmodel Model in loop manual annotation using Tensorflow's Object Detection API.
image.servingmodel Model in loop manual annotation using Tensorflow's Object Detection API. This uses Tensorflow Serving
image.trainmodel Model in loop manual annotation and training using Tensorflow's Object Detection API.

Other

Recipe Description
mark Click through pre-prepared examples, with no model in the loop.
choice Annotate data with multiple-choice options. The annotated examples will have an additional property "accept": [] mapping to the ID(s) of the selected option(s).
question_answering Annotate question/answer pairs with a custom HTML interface.

Community recipes

Recipe Author Description
phrases.teach @kabirkhan Now part of sense2vec.
phrases.to-patterns @kabirkhan Now part of sense2vec.
records.link @kabirkhan Link records across multiple datasets using the dedupe library.

Tutorial recipes

These recipes have made an appearance in one of our tutorials.

Recipe Description
span-and-textcat Do both spancat and textcat annotations at the same time. Great for chatbots!
terms.from-ner Generate terms from previous NER annotations.
audio-with-transcript Handles both manual audio annotation as well as transcription.
progress Demo of an update-callback that tracks annotation speed.

๐Ÿ“š Example Datasets and Patterns

To make it even easier to get started, we've also included a few example-datasets, both raw data as well as data containing annotations created with Prodigy. For examples of token-based match patterns to use with recipes like ner.teach or ner.match, see the example-patterns directory.

More Repositories

1

spaCy

๐Ÿ’ซ Industrial-strength Natural Language Processing (NLP) in Python
Python
29,546
star
2

thinc

๐Ÿ”ฎ A refreshing functional take on deep learning, compatible with your favorite libraries
Python
2,813
star
3

spacy-course

๐Ÿ‘ฉโ€๐Ÿซ Advanced NLP with spaCy: A free online course
Python
2,299
star
4

sense2vec

๐Ÿฆ† Contextually-keyed word vectors
Python
1,615
star
5

spacy-models

๐Ÿ’ซ Models for the spaCy Natural Language Processing (NLP) library
Python
1,589
star
6

spacy-transformers

๐Ÿ›ธ Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
Python
1,334
star
7

projects

๐Ÿช End-to-end NLP workflows from prototype to production
Python
1,285
star
8

spacy-llm

๐Ÿฆ™ Integrating LLMs into structured NLP pipelines
Python
1,049
star
9

curated-transformers

๐Ÿค– A PyTorch library of curated Transformer models and their composable components
Python
858
star
10

spacy-streamlit

๐Ÿ‘‘ spaCy building blocks and visualizers for Streamlit apps
Python
787
star
11

spacy-stanza

๐Ÿ’ฅ Use the latest Stanza (StanfordNLP) research models directly in spaCy
Python
722
star
12

wasabi

๐Ÿฃ A lightweight console printing and formatting toolkit
Python
444
star
13

cymem

๐Ÿ’ฅ Cython memory pool for RAII-style memory management
Cython
436
star
14

srsly

๐Ÿฆ‰ Modern high-performance serialization utilities for Python (JSON, MessagePack, Pickle)
Python
422
star
15

displacy

๐Ÿ’ฅ displaCy.js: An open-source NLP visualiser for the modern web
JavaScript
343
star
16

lightnet

๐ŸŒ“ Bringing pjreddie's DarkNet out of the shadows #yolo
C
319
star
17

prodigy-openai-recipes

โœจ Bootstrap annotation with zero- & few-shot learning via OpenAI GPT-3
Python
318
star
18

spacy-notebooks

๐Ÿ’ซ Jupyter notebooks for spaCy examples and tutorials
Jupyter Notebook
285
star
19

spacy-services

๐Ÿ’ซ REST microservices for various spaCy-related tasks
Python
240
star
20

cython-blis

๐Ÿ’ฅ Fast matrix-multiplication as a self-contained Python library โ€“ no system dependencies!
C
215
star
21

displacy-ent

๐Ÿ’ฅ displaCy-ent.js: An open-source named entity visualiser for the modern web
CSS
197
star
22

jupyterlab-prodigy

๐Ÿงฌ A JupyterLab extension for annotating data with Prodigy
TypeScript
188
star
23

spacymoji

๐Ÿ’™ Emoji handling and meta data for spaCy with custom extension attributes
Python
180
star
24

tokenizations

Robust and Fast tokenizations alignment library for Rust and Python https://tamuhey.github.io/tokenizations/
Rust
180
star
25

wheelwright

๐ŸŽก Automated build repo for Python wheels and source packages
Python
174
star
26

catalogue

Super lightweight function registries for your library
Python
171
star
27

confection

๐Ÿฌ Confection: the sweetest config system for Python
Python
169
star
28

spacy-dev-resources

๐Ÿ’ซ Scripts, tools and resources for developing spaCy
Python
125
star
29

radicli

๐Ÿ•Š๏ธ Radically lightweight command-line interfaces
Python
100
star
30

spacy-lookups-data

๐Ÿ“‚ Additional lookup tables and data resources for spaCy
Python
98
star
31

spacy-experimental

๐Ÿงช Cutting-edge experimental spaCy components and features
Python
94
star
32

talks

๐Ÿ’ฅ Browser-based slides or PDFs of our talks and presentations
JavaScript
94
star
33

thinc-apple-ops

๐Ÿ Make Thinc faster on macOS by calling into Apple's native Accelerate library
Cython
90
star
34

healthsea

Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.
Python
87
star
35

preshed

๐Ÿ’ฅ Cython hash tables that assume keys are pre-hashed
Cython
82
star
36

weasel

๐Ÿฆฆ weasel: A small and easy workflow system
Python
62
star
37

spacy-huggingface-pipelines

๐Ÿ’ฅ Use Hugging Face text and token classification pipelines directly in spaCy
Python
61
star
38

spacy-ray

โ˜„๏ธ Parallel and distributed training with spaCy and Ray
Python
54
star
39

ml-datasets

๐ŸŒŠ Machine learning dataset loaders for testing and example scripts
Python
45
star
40

murmurhash

๐Ÿ’ฅ Cython bindings for MurmurHash2
C++
44
star
41

assets

๐Ÿ’ฅ Explosion Assets
43
star
42

spacy-huggingface-hub

๐Ÿค— Push your spaCy pipelines to the Hugging Face Hub
Python
42
star
43

wikid

Generate a SQLite database from Wikipedia & Wikidata dumps.
Python
30
star
44

vscode-prodigy

๐Ÿงฌ A VS Code extension for annotating data with Prodigy
TypeScript
30
star
45

spacy-alignments

๐Ÿ’ซ A spaCy package for Yohei Tamura's Rust tokenizations library
Python
26
star
46

spacy-vscode

spaCy extension for Visual Studio Code
Python
24
star
47

spacy-curated-transformers

spaCy entry points for Curated Transformers
Python
22
star
48

spacy-benchmarks

๐Ÿ’ซ Runtime performance comparison of spaCy against other NLP libraries
Python
20
star
49

prodigy-hf

Train huggingface models on top of Prodigy annotations
Python
19
star
50

prodigy-pdf

A Prodigy plugin for PDF annotation
Python
18
star
51

spacy-vectors-builder

๐ŸŒธ Train floret vectors
Python
17
star
52

os-signpost

Wrapper for the macOS signpost API
Cython
12
star
53

spacy-loggers

๐Ÿ“Ÿ Logging utilities for spaCy
Python
12
star
54

prodigy-evaluate

๐Ÿ”Ž A Prodigy plugin for evaluating spaCy pipelines
Python
12
star
55

prodigy-segment

Select pixels in Prodigy via Facebook's Segment-Anything model.
Python
11
star
56

curated-tokenizers

Lightweight piece tokenization library
Cython
11
star
57

conll-2012

A slightly cleaned up version of the scripts & data for the CoNLL 2012 Coreference task.
Python
10
star
58

thinc_gpu_ops

๐Ÿ”ฎ GPU kernels for Thinc
C++
9
star
59

prodigy-ann

A Prodigy pluging for ANN techniques
Python
4
star
60

prodigy-whisper

Audio transcription with OpenAI's whisper model in the loop.
Python
4
star
61

princetondh

Code for our presentation in Princeton DH 2023 April.
Jupyter Notebook
4
star
62

spacy-legacy

๐Ÿ•ธ๏ธ Legacy architectures and other registered spaCy v3.x functions for backwards-compatibility
Python
4
star
63

ec2buildwheel

Python
2
star
64

aiGrunn-2023

Materials for the aiGrunn 2023 talk on spaCy Transformer pipelines
Python
1
star
65

spacy-io-binder

๐Ÿ“’ Repository used to build Binder images for the interactive spaCy code examples
Jupyter Notebook
1
star
66

prodigy-lunr

A Prodigy plugin for document search via LUNR
Python
1
star
67

.github

:octocat: GitHub settings
1
star
68

span-labeling-datasets

Loaders for various span labeling datasets
Python
1
star
69

spacy-biaffine-parser

Python
1
star