• Stars
    star
    215
  • Rank 183,925 (Top 4 %)
  • Language
    C
  • License
    Other
  • Created about 7 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

๐Ÿ’ฅ Fast matrix-multiplication as a self-contained Python library โ€“ no system dependencies!

Cython BLIS: Fast BLAS-like operations from Python and Cython, without the tears

This repository provides the Blis linear algebra routines as a self-contained Python C-extension.

Currently, we only supports single-threaded execution, as this is actually best for our workloads (ML inference).

Azure Pipelines pypi Version conda Python wheels

Installation

You can install the package via pip, first making sure that pip, setuptools, and wheel are up-to-date:

pip install -U pip setuptools wheel
pip install blis

Wheels should be available, so installation should be fast. If you want to install from source and you're on Windows, you'll need to install LLVM.

Building BLIS for alternative architectures

The provided wheels should work on x86_64 and osx/arm64 architectures. Unfortunately we do not currently know a way to provide different wheels for alternative architectures, and we cannot provide a single binary that works everywhere. So if the wheel doesn't work for your CPU, you'll need to specify source distribution, and tell Blis your CPU architecture using the BLIS_ARCH environment variable.

a) Install with auto-detected CPU support

pip install spacy --no-binary blis

b) Install using an existing configuration

Provide an architecture from the supported configurations.

BLIS_ARCH="power9" pip install spacy --no-binary blis

c) Install with generic arch support

โš ๏ธ generic is not optimized for any particular CPU and is extremely slow. Only recommended for testing!

BLIS_ARCH="generic" pip install spacy --no-binary blis

d) Build specific support

In order to compile Blis, cython-blis bundles makefile scripts for specific architectures, that are compiled by running the Blis build system and logging the commands. We do not yet have logs for every architecture, as there are some architectures we have not had access to.

See here for list of architectures. For example, here's how to build support for the Intel architecture knl:

git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule status
python3 -m venv venv
source venv/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
./bin/generate-make-jsonl linux knl
BLIS_ARCH="knl" python setup.py build_ext --inplace
BLIS_ARCH="knl" python setup.py bdist_wheel

Fingers crossed, this will build you a wheel that supports your platform. You could then submit a PR with the blis/_src/make/linux-knl.jsonl and blis/_src/include/linux-knl/blis.h files so that you can run:

BLIS_ARCH="knl" pip install --no-binary=blis

Usage

Two APIs are provided: a high-level Python API, and direct Cython access, which provides fused-type, nogil Cython bindings to the underlying Blis linear algebra library. Fused types are a simple template mechanism, allowing just a touch of compile-time generic programming:

cimport blis.cy
A = <float*>calloc(nN * nI, sizeof(float))
B = <float*>calloc(nO * nI, sizeof(float))
C = <float*>calloc(nr_b0 * nr_b1, sizeof(float))
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.NO_TRANSPOSE,
             nO, nI, nN,
             1.0, A, nI, 1, B, nO, 1,
             1.0, C, nO, 1)

Bindings have been added as we've needed them. Please submit pull requests if the library is missing some functions you require.

Development

To build the source package, you should run the following command:

./bin/update-vendored-source

This populates the blis/_src folder for the various architectures, using the flame-blis submodule.

Updating the build files

In order to compile the Blis sources, we use jsonl files that provide the explicit compiler flags. We build these jsonl files by running Blis's build system, and then converting the log. This avoids us having to replicate the build system within Python: we just use the jsonl to make a bunch of subprocess calls. To support a new OS/architecture combination, we have to provide the jsonl file and the header.

Linux

The Linux build files need to be produced from within the manylinux2014 Docker container, so that they will be compatible with the wheel building process.

First, install docker. Then do the following to start the container:

sudo docker run -it quay.io/pypa/manylinux2014_x86_64:latest

Once within the container, the following commands should check out the repo and build the jsonl files for the generic arch:

mkdir /usr/local/repos
cd /usr/local/repos
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule
status
/opt/python/cp36-cp36m/bin/python -m venv env3.6
source env3.6/bin/activate
pip install -r requirements.txt
./bin/generate-make-jsonl linux generic --export
BLIS_ARCH=generic python setup.py build_ext --inplace
# N.B.: don't copy to /tmp, docker cp doesn't work from there.
cp blis/_src/include/linux-generic/blis.h /linux-generic-blis.h
cp blis/_src/make/linux-generic.jsonl /

Then from a new terminal, retrieve the two files we need out of the container:

sudo docker ps -l # Get the container ID
# When I'm in Vagrant, I need to go via cat -- but then I end up with dummy
# lines at the top and bottom. Sigh. If you don't have that problem and
# sudo docker cp just works, just copy the file.
sudo docker cp aa9d42588791:/linux-generic-blis.h - | cat > linux-generic-blis.h
sudo docker cp aa9d42588791:/linux-generic.jsonl - | cat > linux-generic.jsonl

More Repositories

1

spaCy

๐Ÿ’ซ Industrial-strength Natural Language Processing (NLP) in Python
Python
29,546
star
2

thinc

๐Ÿ”ฎ A refreshing functional take on deep learning, compatible with your favorite libraries
Python
2,813
star
3

spacy-course

๐Ÿ‘ฉโ€๐Ÿซ Advanced NLP with spaCy: A free online course
Python
2,299
star
4

sense2vec

๐Ÿฆ† Contextually-keyed word vectors
Python
1,615
star
5

spacy-models

๐Ÿ’ซ Models for the spaCy Natural Language Processing (NLP) library
Python
1,589
star
6

spacy-transformers

๐Ÿ›ธ Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
Python
1,334
star
7

projects

๐Ÿช End-to-end NLP workflows from prototype to production
Python
1,285
star
8

spacy-llm

๐Ÿฆ™ Integrating LLMs into structured NLP pipelines
Python
1,049
star
9

curated-transformers

๐Ÿค– A PyTorch library of curated Transformer models and their composable components
Python
858
star
10

spacy-streamlit

๐Ÿ‘‘ spaCy building blocks and visualizers for Streamlit apps
Python
787
star
11

spacy-stanza

๐Ÿ’ฅ Use the latest Stanza (StanfordNLP) research models directly in spaCy
Python
722
star
12

prodigy-recipes

๐Ÿณ Recipes for the Prodigy, our fully scriptable annotation tool
Jupyter Notebook
477
star
13

wasabi

๐Ÿฃ A lightweight console printing and formatting toolkit
Python
444
star
14

cymem

๐Ÿ’ฅ Cython memory pool for RAII-style memory management
Cython
436
star
15

srsly

๐Ÿฆ‰ Modern high-performance serialization utilities for Python (JSON, MessagePack, Pickle)
Python
422
star
16

displacy

๐Ÿ’ฅ displaCy.js: An open-source NLP visualiser for the modern web
JavaScript
343
star
17

lightnet

๐ŸŒ“ Bringing pjreddie's DarkNet out of the shadows #yolo
C
319
star
18

prodigy-openai-recipes

โœจ Bootstrap annotation with zero- & few-shot learning via OpenAI GPT-3
Python
318
star
19

spacy-notebooks

๐Ÿ’ซ Jupyter notebooks for spaCy examples and tutorials
Jupyter Notebook
285
star
20

spacy-services

๐Ÿ’ซ REST microservices for various spaCy-related tasks
Python
240
star
21

displacy-ent

๐Ÿ’ฅ displaCy-ent.js: An open-source named entity visualiser for the modern web
CSS
197
star
22

jupyterlab-prodigy

๐Ÿงฌ A JupyterLab extension for annotating data with Prodigy
TypeScript
188
star
23

spacymoji

๐Ÿ’™ Emoji handling and meta data for spaCy with custom extension attributes
Python
180
star
24

tokenizations

Robust and Fast tokenizations alignment library for Rust and Python https://tamuhey.github.io/tokenizations/
Rust
180
star
25

wheelwright

๐ŸŽก Automated build repo for Python wheels and source packages
Python
174
star
26

catalogue

Super lightweight function registries for your library
Python
171
star
27

confection

๐Ÿฌ Confection: the sweetest config system for Python
Python
169
star
28

spacy-dev-resources

๐Ÿ’ซ Scripts, tools and resources for developing spaCy
Python
125
star
29

radicli

๐Ÿ•Š๏ธ Radically lightweight command-line interfaces
Python
100
star
30

spacy-lookups-data

๐Ÿ“‚ Additional lookup tables and data resources for spaCy
Python
98
star
31

spacy-experimental

๐Ÿงช Cutting-edge experimental spaCy components and features
Python
94
star
32

talks

๐Ÿ’ฅ Browser-based slides or PDFs of our talks and presentations
JavaScript
94
star
33

thinc-apple-ops

๐Ÿ Make Thinc faster on macOS by calling into Apple's native Accelerate library
Cython
90
star
34

healthsea

Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.
Python
87
star
35

preshed

๐Ÿ’ฅ Cython hash tables that assume keys are pre-hashed
Cython
82
star
36

weasel

๐Ÿฆฆ weasel: A small and easy workflow system
Python
62
star
37

spacy-huggingface-pipelines

๐Ÿ’ฅ Use Hugging Face text and token classification pipelines directly in spaCy
Python
61
star
38

spacy-ray

โ˜„๏ธ Parallel and distributed training with spaCy and Ray
Python
54
star
39

ml-datasets

๐ŸŒŠ Machine learning dataset loaders for testing and example scripts
Python
45
star
40

murmurhash

๐Ÿ’ฅ Cython bindings for MurmurHash2
C++
44
star
41

assets

๐Ÿ’ฅ Explosion Assets
43
star
42

spacy-huggingface-hub

๐Ÿค— Push your spaCy pipelines to the Hugging Face Hub
Python
42
star
43

wikid

Generate a SQLite database from Wikipedia & Wikidata dumps.
Python
30
star
44

vscode-prodigy

๐Ÿงฌ A VS Code extension for annotating data with Prodigy
TypeScript
30
star
45

spacy-alignments

๐Ÿ’ซ A spaCy package for Yohei Tamura's Rust tokenizations library
Python
26
star
46

spacy-vscode

spaCy extension for Visual Studio Code
Python
24
star
47

spacy-curated-transformers

spaCy entry points for Curated Transformers
Python
22
star
48

spacy-benchmarks

๐Ÿ’ซ Runtime performance comparison of spaCy against other NLP libraries
Python
20
star
49

prodigy-hf

Train huggingface models on top of Prodigy annotations
Python
19
star
50

prodigy-pdf

A Prodigy plugin for PDF annotation
Python
18
star
51

spacy-vectors-builder

๐ŸŒธ Train floret vectors
Python
17
star
52

os-signpost

Wrapper for the macOS signpost API
Cython
12
star
53

spacy-loggers

๐Ÿ“Ÿ Logging utilities for spaCy
Python
12
star
54

prodigy-evaluate

๐Ÿ”Ž A Prodigy plugin for evaluating spaCy pipelines
Python
12
star
55

prodigy-segment

Select pixels in Prodigy via Facebook's Segment-Anything model.
Python
11
star
56

curated-tokenizers

Lightweight piece tokenization library
Cython
11
star
57

conll-2012

A slightly cleaned up version of the scripts & data for the CoNLL 2012 Coreference task.
Python
10
star
58

thinc_gpu_ops

๐Ÿ”ฎ GPU kernels for Thinc
C++
9
star
59

prodigy-ann

A Prodigy pluging for ANN techniques
Python
4
star
60

prodigy-whisper

Audio transcription with OpenAI's whisper model in the loop.
Python
4
star
61

princetondh

Code for our presentation in Princeton DH 2023 April.
Jupyter Notebook
4
star
62

spacy-legacy

๐Ÿ•ธ๏ธ Legacy architectures and other registered spaCy v3.x functions for backwards-compatibility
Python
4
star
63

ec2buildwheel

Python
2
star
64

aiGrunn-2023

Materials for the aiGrunn 2023 talk on spaCy Transformer pipelines
Python
1
star
65

spacy-io-binder

๐Ÿ“’ Repository used to build Binder images for the interactive spaCy code examples
Jupyter Notebook
1
star
66

prodigy-lunr

A Prodigy plugin for document search via LUNR
Python
1
star
67

.github

:octocat: GitHub settings
1
star
68

span-labeling-datasets

Loaders for various span labeling datasets
Python
1
star
69

spacy-biaffine-parser

Python
1
star