• Stars
    star
    1
  • Language
    Jupyter Notebook
  • Created almost 5 years ago
  • Updated almost 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

More Repositories

1

Stanford-Project-Predicting-stock-prices-using-a-LSTM-Network

Stanford Project: Artificial Intelligence is changing virtually every aspect of our lives. Today’s algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is an exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Models that explain the returns of individual stocks generally use company and stock characteristics, e.g., the market prices of financial instruments and companies’ accounting data. These characteristics can also be used to predict expected stock returns out-of-sample. Most studies use simple linear models to form these predictions [1] or [2]. An increasing body of academic literature documents that more sophisticated tools from the Machine Learning (ML) and Deep Learning (DL) repertoire, which allow for nonlinear predictor interactions, can improve the stock return forecasts [3], [4] or [5]. The main goal of this project is to investigate whether modern DL techniques can be utilized to more efficiently predict the movements of the stock market. Specifically, we train a LSTM neural network with time series price-volume data and compare its out-of-sample return predictability with the performance of a simple logistic regression (our baseline model).
Jupyter Notebook
225
star
2

Exploring-the-Bitcoin-cryptocurrency-market

To better understand the growth and impact of Bitcoin and other cryptocurrencies we explore the market capitalization of different cryptocurrencies.
Jupyter Notebook
2
star