• Stars
    star
    177
  • Rank 214,681 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 4 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pytorch code for NeurIPS-20 Paper "Object Goal Navigation using Goal-Oriented Semantic Exploration"

Object Goal Navigation using Goal-Oriented Semantic Exploration

This is a PyTorch implementation of the NeurIPS-20 paper:

Object Goal Navigation using Goal-Oriented Semantic Exploration
Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, Ruslan Salakhutdinov
Carnegie Mellon University, Facebook AI Research

Winner of the CVPR 2020 Habitat ObjectNav Challenge.

Project Website: https://devendrachaplot.github.io/projects/semantic-exploration

example

Overview:

The Goal-Oriented Semantic Exploration (SemExp) model consists of three modules: a Semantic Mapping Module, a Goal-Oriented Semantic Policy, and a deterministic Local Policy. As shown below, the Semantic Mapping model builds a semantic map over time. The Goal-Oriented Semantic Policy selects a long-term goal based on the semantic map to reach the given object goal efficiently. A deterministic local policy based on analytical planners is used to take low-level navigation actions to reach the long-term goal.

overview

This repository contains:

  • Episode train and test datasets for Object Goal Navigation task for the Gibson dataset in the Habitat Simulator.
  • The code to train and evaluate the Semantic Exploration (SemExp) model on the Object Goal Navigation task.
  • Pretrained SemExp model.

Installing Dependencies

Installing habitat-sim:

git clone https://github.com/facebookresearch/habitat-sim.git
cd habitat-sim; git checkout tags/v0.1.5; 
pip install -r requirements.txt; 
python setup.py install --headless
python setup.py install # (for Mac OS)

Installing habitat-lab:

git clone https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab; git checkout tags/v0.1.5; 
pip install -e .

Check habitat installation by running python examples/benchmark.py in the habitat-lab folder.

  • Install pytorch according to your system configuration. The code is tested on pytorch v1.6.0 and cudatoolkit v10.2. If you are using conda:
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 #(Linux with GPU)
conda install pytorch==1.6.0 torchvision==0.7.0 -c pytorch #(Mac OS)
  • Install detectron2 according to your system configuration. If you are using conda:
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.6/index.html #(Linux with GPU)
CC=clang CXX=clang++ ARCHFLAGS="-arch x86_64" python -m pip install 'git+https://github.com/facebookresearch/detectron2.git' #(Mac OS)

Docker and Singularity images:

We provide experimental docker and singularity images with all the dependencies installed, see Docker Instructions.

Setup

Clone the repository and install other requirements:

git clone https://github.com/devendrachaplot/Object-Goal-Navigation/
cd Object-Goal-Navigation/;
pip install -r requirements.txt

Downloading scene dataset

Downloading episode dataset

  • Download the episode dataset:
wget --no-check-certificate 'https://drive.google.com/uc?export=download&id=1tslnZAkH8m3V5nP8pbtBmaR2XEfr8Rau' -O objectnav_gibson_v1.1.zip
  • Unzip the dataset into data/datasets/objectnav/gibson/v1.1/

Setting up datasets

The code requires the datasets in a data folder in the following format (same as habitat-lab):

Object-Goal-Navigation/
  data/
    scene_datasets/
      gibson_semantic/
        Adrian.glb
        Adrian.navmesh
        ...
    datasets/
      objectnav/
        gibson/
          v1.1/
            train/
            val/

Test setup

To verify that the data is setup correctly, run:

python test.py --agent random -n1 --num_eval_episodes 1 --auto_gpu_config 0

Usage

Training:

For training the SemExp model on the Object Goal Navigation task:

python main.py

Downloading pre-trained models

mkdir pretrained_models;
wget --no-check-certificate 'https://drive.google.com/uc?export=download&id=171ZA7XNu5vi3XLpuKs8DuGGZrYyuSjL0' -O pretrained_models/sem_exp.pth

For evaluation:

For evaluating the pre-trained model:

python main.py --split val --eval 1 --load pretrained_models/sem_exp.pth

For visualizing the agent observations and predicted semantic map, add -v 1 as an argument to the above command.

The pre-trained model should get 0.657 Success, 0.339 SPL and 1.474 DTG.

For more detailed instructions, see INSTRUCTIONS.

Cite as

Chaplot, D.S., Gandhi, D., Gupta, A. and Salakhutdinov, R., 2020. Object Goal Navigation using Goal-Oriented Semantic Exploration. In Neural Information Processing Systems (NeurIPS-20). (PDF)

Bibtex:

@inproceedings{chaplot2020object,
  title={Object Goal Navigation using Goal-Oriented Semantic Exploration},
  author={Chaplot, Devendra Singh and Gandhi, Dhiraj and
            Gupta, Abhinav and Salakhutdinov, Ruslan},
  booktitle={In Neural Information Processing Systems (NeurIPS)},
  year={2020}
  }

Related Projects

Acknowledgements

This repository uses Habitat Lab implementation for running the RL environment. The implementation of PPO is borrowed from ikostrikov/pytorch-a2c-ppo-acktr-gail. The Mask-RCNN implementation is based on the detectron2 repository. We would also like to thank Shubham Tulsiani and Saurabh Gupta for their help in implementing some parts of the code.

More Repositories

1

Neural-SLAM

Pytorch code for ICLR-20 Paper "Learning to Explore using Active Neural SLAM"
Python
643
star
2

DeepRL-Grounding

Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)
Python
237
star
3

Neural-Localization

Train an RL agent to localize actively (PyTorch)
Python
209
star
4

TicketMaster

TicketMaster Chrome Extension - Quick Easy Automatic Ticket Booking on IRCTC (Including tatkal)
JavaScript
18
star
5

Toonification

Android Application to convert an image to a cartoon
Java
10
star
6

Stock-Exchange-Web-App

Stock Exchange Web Application that simulates the real world Stock Market using MySQL.
CSS
7
star
7

8-Puzzle-Solver

The project is a graphical application made on Qt, which solves the famous 8-Puzzle using two algorithms -- A* and IDA*, and 2 heuristics -- Manhattan Distance and Number of misplaced tiles.
C++
4
star
8

Battle-Tanks

Battle Tanks is a graphical game similar to Pocket Tanks
C
2
star
9

CFG-Language-Processor-And-Compiler

Generating executable Spim Assembly language program from gcc Control Flow Graph(CFG) Dumps
C++
2
star
10

String-and-Tree-Kernels

Course Project of Statistical Relational Learning
C
2
star
11

Virtual-Memory-Management

Extending the base implementation of OS161 to include Virtual Memory system.
C
1
star
12

Device-Detection-from-Accelerometer-data

Investigating feasibility of using accelerometer data as a biometric for identifying users of mobile devices
Java
1
star
13

Spell-Correction

Spell correction through Statiscal and Knowledge-based approaches
Java
1
star
14

ProZip

ProZip is graphical application capable of compressing and decompressing files using various algorithms like LZW, Huffman, and Shannon -- Fanon
Racket
1
star