• Stars
    star
    1,268
  • Rank 37,109 (Top 0.8 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 7 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The dataset is used to train my own raccoon detector and I blogged about it on Medium

Raccoon Detector Dataset

This is a dataset that I collected to train my own Raccoon detector with TensorFlow's Object Detection API. Images are from Google and Pixabay. In total, there are 200 images (160 are used for training and 40 for validation).

Getting Started

Folder Structure:
+ annotations: contains the xml files in PASCAL VOC format
+ data: contains the input file for the TF object detection API and the label files (csv)
+ images: contains the image data in jpg format
+ training: contains the pipeline configuration file, frozen model and labelmap
- a few handy scripts: generate_tfrecord.py is used to generate the input files
for the TF API and xml_to_csv.py is used to convert the xml files into one csv
- a few jupyter notebooks: draw boxes is used to plot some of the data and
split labels is used to split the full labels into train and test labels

Copyright

See LICENSE for details. Copyright (c) 2017 Dat Tran.