• Stars
    star
    2,098
  • Rank 22,008 (Top 0.5 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 10 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Colour Science for Python

https://raw.githubusercontent.com/colour-science/colour-branding/master/images/Colour_Logo_001.png


Powered by NumFOCUS Develop Build Status Coverage Status Code Grade Package Version DOI

Colour is an open-source Python package providing a comprehensive number of algorithms and datasets for colour science.

It is freely available under the New BSD License terms.

Colour is an affiliated project of NumFOCUS, a 501(c)(3) nonprofit in the United States.

1   Draft Release Notes

The draft release notes of the develop branch are available at this url.

2   Sponsors

We are grateful 💖 for the support of our sponsors. If you'd like to join them, please consider becoming a sponsor on OpenCollective.

Gold Sponsors

makeup.land

Joseph Goldstone

Bronze Sponsors

Sean Cooper

CAVE Academy

Studio Zhanna Alekseeva.NYC

Donations & Special Sponsors

JetBrains

Troy James Sobotka

Remi Achard

Kevin Whitfield

Richard Lackey

Liam Collod

Nick Shaw

Alex Mitchell

Ilia Sibiryakov

Zack Lewis

Frederic Savoir

Howard Colin

Christophe Brejon

Mario Rokicki

3   Features

Most of the objects are available from the colour namespace:

>>> import colour

3.1   Automatic Colour Conversion Graph - colour.graph

Starting with version 0.3.14, Colour implements an automatic colour conversion graph enabling easier colour conversions.

https://colour.readthedocs.io/en/develop/_static/Examples_Colour_Automatic_Conversion_Graph.png

>>> sd = colour.SDS_COLOURCHECKERS["ColorChecker N Ohta"]["dark skin"]
>>> colour.convert(
...     sd, "Spectral Distribution", "sRGB", verbose={"mode": "Short"}
... )
===============================================================================
*                                                                             *
*   [ Conversion Path ]                                                       *
*                                                                             *
*   "sd_to_XYZ" --> "XYZ_to_sRGB"                                             *
*                                                                             *
===============================================================================
array([ 0.45675795,  0.30986982,  0.24861924])
>>> illuminant = colour.SDS_ILLUMINANTS["FL2"]
>>> colour.convert(
...     sd,
...     "Spectral Distribution",
...     "sRGB",
...     sd_to_XYZ={"illuminant": illuminant},
... )
array([ 0.47924575,  0.31676968,  0.17362725])

3.2   Chromatic Adaptation - colour.adaptation

>>> XYZ = [0.20654008, 0.12197225, 0.05136952]
>>> D65 = colour.CCS_ILLUMINANTS["CIE 1931 2 Degree Standard Observer"][
...     "D65"
... ]
>>> A = colour.CCS_ILLUMINANTS["CIE 1931 2 Degree Standard Observer"]["A"]
>>> colour.chromatic_adaptation(
...     XYZ, colour.xy_to_XYZ(D65), colour.xy_to_XYZ(A)
... )
array([ 0.2533053 ,  0.13765138,  0.01543307])
>>> sorted(colour.CHROMATIC_ADAPTATION_METHODS)
['CIE 1994', 'CMCCAT2000', 'Fairchild 1990', 'Von Kries', 'Zhai 2018']

3.3   Algebra - colour.algebra

3.3.1   Kernel Interpolation

>>> y = [5.9200, 9.3700, 10.8135, 4.5100, 69.5900, 27.8007, 86.0500]
>>> x = range(len(y))
>>> colour.KernelInterpolator(x, y)([0.25, 0.75, 5.50])
array([  6.18062083,   8.08238488,  57.85783403])

3.3.2   Sprague (1880) Interpolation

>>> y = [5.9200, 9.3700, 10.8135, 4.5100, 69.5900, 27.8007, 86.0500]
>>> x = range(len(y))
>>> colour.SpragueInterpolator(x, y)([0.25, 0.75, 5.50])
array([  6.72951612,   7.81406251,  43.77379185])

3.4   Colour Appearance Models - colour.appearance

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> XYZ_w = [95.05, 100.00, 108.88]
>>> L_A = 318.31
>>> Y_b = 20.0
>>> colour.XYZ_to_CIECAM02(XYZ, XYZ_w, L_A, Y_b)
CAM_Specification_CIECAM02(J=34.434525727858997, C=67.365010921125943, h=22.279164147957065, s=62.81485585332716, Q=177.47124941102123, M=70.024939419291414, H=2.6896085344238898, HC=None)
>>> colour.XYZ_to_CIECAM16(XYZ, XYZ_w, L_A, Y_b)
CAM_Specification_CIECAM16(J=34.434525727858997, C=67.365010921125943, h=22.279164147957065, s=62.81485585332716, Q=177.47124941102123, M=70.024939419291414, H=2.6896085344238898, HC=None)
>>> colour.XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b)
CAM_Specification_CAM16(J=33.880368498111686, C=69.444353357408033, h=19.510887327451748, s=64.03612114840314, Q=176.03752758512178, M=72.18638534116765, H=399.52975599115319, HC=None)
>>> colour.XYZ_to_Hellwig2022(XYZ, XYZ_w, L_A)
CAM_Specification_Hellwig2022(J=33.880368498111686, C=40.347043294550311, h=19.510887327451748, s=117.38555017188679, Q=45.34489577734751, M=53.228355383108031, H=399.52975599115319, HC=None)
>>> colour.XYZ_to_Kim2009(XYZ, XYZ_w, L_A)
CAM_Specification_Kim2009(J=19.879918542450902, C=55.839055250876946, h=22.013388165090046, s=112.97979354939129, Q=36.309026130161449, M=46.346415858227864, H=2.3543198369639931, HC=None)
>>> colour.XYZ_to_ZCAM(XYZ, XYZ_w, L_A, Y_b)
CAM_Specification_ZCAM(J=38.347186278956357, C=21.12138989208518, h=33.711578931095197, s=81.444585609489536, Q=76.986725284523772, M=42.403805833900506, H=0.45779200212219573, HC=None, V=43.623590687423544, K=43.20894953152817, W=34.829588380192149)

3.5   Colour Blindness - colour.blindness

>>> import numpy as np
>>> cmfs = colour.LMS_CMFS["Stockman & Sharpe 2 Degree Cone Fundamentals"]
>>> colour.msds_cmfs_anomalous_trichromacy_Machado2009(
...     cmfs, np.array([15, 0, 0])
... )[450]
array([ 0.08912884,  0.0870524 ,  0.955393  ])
>>> primaries = colour.MSDS_DISPLAY_PRIMARIES["Apple Studio Display"]
>>> d_LMS = (15, 0, 0)
>>> colour.matrix_anomalous_trichromacy_Machado2009(cmfs, primaries, d_LMS)
array([[-0.27774652,  2.65150084, -1.37375432],
       [ 0.27189369,  0.20047862,  0.52762768],
       [ 0.00644047,  0.25921579,  0.73434374]])

3.6   Colour Correction - colour characterisation

>>> import numpy as np
>>> RGB = [0.17224810, 0.09170660, 0.06416938]
>>> M_T = np.random.random((24, 3))
>>> M_R = M_T + (np.random.random((24, 3)) - 0.5) * 0.5
>>> colour.colour_correction(RGB, M_T, M_R)
array([ 0.1806237 ,  0.07234791,  0.07848845])
>>> sorted(colour.COLOUR_CORRECTION_METHODS)
['Cheung 2004', 'Finlayson 2015', 'Vandermonde']

3.7   ACES Input Transform - colour characterisation

>>> sensitivities = colour.MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"]
>>> illuminant = colour.SDS_ILLUMINANTS["D55"]
>>> colour.matrix_idt(sensitivities, illuminant)
(array([[ 0.59368175,  0.30418371,  0.10213454],
       [ 0.00457979,  1.14946003, -0.15403982],
       [ 0.03552213, -0.16312291,  1.12760077]]), array([ 1.58214188,  1.        ,  1.28910346]))

3.8   Colorimetry - colour.colorimetry

3.8.1   Spectral Computations

>>> colour.sd_to_XYZ(colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"])
array([ 36.94726204,  32.62076174,  13.0143849 ])
>>> sorted(colour.SPECTRAL_TO_XYZ_METHODS)
['ASTM E308', 'Integration', 'astm2015']

3.8.2   Multi-Spectral Computations

>>> msds = np.array(
...     [
...         [
...             [
...                 0.01367208,
...                 0.09127947,
...                 0.01524376,
...                 0.02810712,
...                 0.19176012,
...                 0.04299992,
...             ],
...             [
...                 0.00959792,
...                 0.25822842,
...                 0.41388571,
...                 0.22275120,
...                 0.00407416,
...                 0.37439537,
...             ],
...             [
...                 0.01791409,
...                 0.29707789,
...                 0.56295109,
...                 0.23752193,
...                 0.00236515,
...                 0.58190280,
...             ],
...         ],
...         [
...             [
...                 0.01492332,
...                 0.10421912,
...                 0.02240025,
...                 0.03735409,
...                 0.57663846,
...                 0.32416266,
...             ],
...             [
...                 0.04180972,
...                 0.26402685,
...                 0.03572137,
...                 0.00413520,
...                 0.41808194,
...                 0.24696727,
...             ],
...             [
...                 0.00628672,
...                 0.11454948,
...                 0.02198825,
...                 0.39906919,
...                 0.63640803,
...                 0.01139849,
...             ],
...         ],
...         [
...             [
...                 0.04325933,
...                 0.26825359,
...                 0.23732357,
...                 0.05175860,
...                 0.01181048,
...                 0.08233768,
...             ],
...             [
...                 0.02484169,
...                 0.12027161,
...                 0.00541695,
...                 0.00654612,
...                 0.18603799,
...                 0.36247808,
...             ],
...             [
...                 0.03102159,
...                 0.16815442,
...                 0.37186235,
...                 0.08610666,
...                 0.00413520,
...                 0.78492409,
...             ],
...         ],
...         [
...             [
...                 0.11682307,
...                 0.78883040,
...                 0.74468607,
...                 0.83375293,
...                 0.90571451,
...                 0.70054168,
...             ],
...             [
...                 0.06321812,
...                 0.41898224,
...                 0.15190357,
...                 0.24591440,
...                 0.55301750,
...                 0.00657664,
...             ],
...             [
...                 0.00305180,
...                 0.11288624,
...                 0.11357290,
...                 0.12924391,
...                 0.00195315,
...                 0.21771573,
...             ],
...         ],
...     ]
... )
>>> colour.msds_to_XYZ(
...     msds,
...     method="Integration",
...     shape=colour.SpectralShape(400, 700, 60),
... )
array([[[  7.68544647,   4.09414317,   8.49324254],
        [ 17.12567298,  27.77681821,  25.52573685],
        [ 19.10280411,  34.45851476,  29.76319628]],
       [[ 18.03375827,   8.62340812,   9.71702574],
        [ 15.03110867,   6.54001068,  24.53208465],
        [ 37.68269495,  26.4411103 ,  10.66361816]],
       [[  8.09532373,  12.75333339,  25.79613956],
        [  7.09620297,   2.79257389,  11.15039854],
        [  8.933163  ,  19.39985815,  17.14915636]],
       [[ 80.00969553,  80.39810464,  76.08184429],
        [ 33.27611427,  24.38947838,  39.34919287],
        [  8.89425686,  11.05185138,  10.86767594]]])
>>> sorted(colour.MSDS_TO_XYZ_METHODS)
['ASTM E308', 'Integration', 'astm2015']

3.8.3   Blackbody Spectral Radiance Computation

>>> colour.sd_blackbody(5000)
SpectralDistribution([[  3.60000000e+02,   6.65427827e+12],
                      [  3.61000000e+02,   6.70960528e+12],
                      [  3.62000000e+02,   6.76482512e+12],
                      ...
                      [  7.78000000e+02,   1.06068004e+13],
                      [  7.79000000e+02,   1.05903327e+13],
                      [  7.80000000e+02,   1.05738520e+13]],
                     interpolator=SpragueInterpolator,
                     interpolator_args={},
                     extrapolator=Extrapolator,
                     extrapolator_args={'right': None, 'method': 'Constant', 'left': None})

3.8.4   Dominant, Complementary Wavelength & Colour Purity Computation

>>> xy = [0.54369557, 0.32107944]
>>> xy_n = [0.31270000, 0.32900000]
>>> colour.dominant_wavelength(xy, xy_n)
(array(616.0),
 array([ 0.68354746,  0.31628409]),
 array([ 0.68354746,  0.31628409]))

3.8.5   Lightness Computation

>>> colour.lightness(12.19722535)
41.527875844653451
>>> sorted(colour.LIGHTNESS_METHODS)
['Abebe 2017'
 'CIE 1976',
 'Fairchild 2010',
 'Fairchild 2011',
 'Glasser 1958',
 'Lstar1976',
 'Wyszecki 1963']

3.8.6   Luminance Computation

>>> colour.luminance(41.52787585)
12.197225353400775
>>> sorted(colour.LUMINANCE_METHODS)
['ASTM D1535',
 'CIE 1976',
 'Fairchild 2010',
 'Fairchild 2011',
 'Newhall 1943',
 'astm2008',
 'cie1976']

3.8.7   Whiteness Computation

>>> XYZ = [95.00000000, 100.00000000, 105.00000000]
>>> XYZ_0 = [94.80966767, 100.00000000, 107.30513595]
>>> colour.whiteness(XYZ, XYZ_0)
array([ 93.756     ,  -1.33000001])
>>> sorted(colour.WHITENESS_METHODS)
['ASTM E313',
 'Berger 1959',
 'CIE 2004',
 'Ganz 1979',
 'Stensby 1968',
 'Taube 1960',
 'cie2004']

3.8.8   Yellowness Computation

>>> XYZ = [95.00000000, 100.00000000, 105.00000000]
>>> colour.yellowness(XYZ)
4.3400000000000034
>>> sorted(colour.YELLOWNESS_METHODS)
['ASTM D1925', 'ASTM E313', 'ASTM E313 Alternative']

3.8.9   Luminous Flux, Efficiency & Efficacy Computation

>>> sd = colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"]
>>> colour.luminous_flux(sd)
23807.655527367202
>>> sd = colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"]
>>> colour.luminous_efficiency(sd)
0.19943935624521045
>>> sd = colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"]
>>> colour.luminous_efficacy(sd)
136.21708031547874

3.9   Contrast Sensitivity Function - colour.contrast

>>> colour.contrast_sensitivity_function(u=4, X_0=60, E=65)
358.51180789884984
>>> sorted(colour.CONTRAST_SENSITIVITY_METHODS)
['Barten 1999']

3.10   Colour Difference - colour.difference

>>> Lab_1 = [100.00000000, 21.57210357, 272.22819350]
>>> Lab_2 = [100.00000000, 426.67945353, 72.39590835]
>>> colour.delta_E(Lab_1, Lab_2)
94.035649026659485
>>> sorted(colour.DELTA_E_METHODS)
['CAM02-LCD',
 'CAM02-SCD',
 'CAM02-UCS',
 'CAM16-LCD',
 'CAM16-SCD',
 'CAM16-UCS',
 'CIE 1976',
 'CIE 1994',
 'CIE 2000',
 'CMC',
 'DIN99',
 'ITP',
 'cie1976',
 'cie1994',
 'cie2000']

3.11   IO - colour.io

3.11.1   Images

>>> RGB = colour.read_image("Ishihara_Colour_Blindness_Test_Plate_3.png")
>>> RGB.shape
(276, 281, 3)

3.11.2   Look Up Table (LUT) Data

>>> LUT = colour.read_LUT("ACES_Proxy_10_to_ACES.cube")
>>> print(LUT)
LUT3x1D - ACES Proxy 10 to ACES
-------------------------------
Dimensions : 2
Domain     : [[0 0 0]
              [1 1 1]]
Size       : (32, 3)
>>> RGB = [0.17224810, 0.09170660, 0.06416938]
>>> LUT.apply(RGB)
array([ 0.00575674,  0.00181493,  0.00121419])

3.12   Colour Models - colour.models

3.12.1   CIE xyY Colourspace

>>> colour.XYZ_to_xyY([0.20654008, 0.12197225, 0.05136952])
array([ 0.54369557,  0.32107944,  0.12197225])

3.12.2   CIE L*a*b* Colourspace

>>> colour.XYZ_to_Lab([0.20654008, 0.12197225, 0.05136952])
array([ 41.52787529,  52.63858304,  26.92317922])

3.12.3   CIE L*u*v* Colourspace

>>> colour.XYZ_to_Luv([0.20654008, 0.12197225, 0.05136952])
array([ 41.52787529,  96.83626054,  17.75210149])

3.12.4   CIE 1960 UCS Colourspace

>>> colour.XYZ_to_UCS([0.20654008, 0.12197225, 0.05136952])
array([ 0.13769339,  0.12197225,  0.1053731 ])

3.12.5   CIE 1964 U*V*W* Colourspace

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> colour.XYZ_to_UVW(XYZ)
array([ 94.55035725,  11.55536523,  40.54757405])

3.12.6   CAM02-LCD, CAM02-SCD, and CAM02-UCS Colourspaces - Luo, Cui and Li (2006)

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> XYZ_w = [95.05, 100.00, 108.88]
>>> L_A = 318.31
>>> Y_b = 20.0
>>> surround = colour.VIEWING_CONDITIONS_CIECAM02["Average"]
>>> specification = colour.XYZ_to_CIECAM02(XYZ, XYZ_w, L_A, Y_b, surround)
>>> JMh = (specification.J, specification.M, specification.h)
>>> colour.JMh_CIECAM02_to_CAM02UCS(JMh)
array([ 47.16899898,  38.72623785,  15.8663383 ])
>>> XYZ = [0.20654008, 0.12197225, 0.05136952]
>>> XYZ_w = [95.05 / 100, 100.00 / 100, 108.88 / 100]
>>> colour.XYZ_to_CAM02UCS(XYZ, XYZ_w=XYZ_w, L_A=L_A, Y_b=Y_b)
array([ 47.16899898,  38.72623785,  15.8663383 ])

3.12.7   CAM16-LCD, CAM16-SCD, and CAM16-UCS Colourspaces - Li et al. (2017)

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> XYZ_w = [95.05, 100.00, 108.88]
>>> L_A = 318.31
>>> Y_b = 20.0
>>> surround = colour.VIEWING_CONDITIONS_CAM16["Average"]
>>> specification = colour.XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)
>>> JMh = (specification.J, specification.M, specification.h)
>>> colour.JMh_CAM16_to_CAM16UCS(JMh)
array([ 46.55542238,  40.22460974,  14.25288392]
>>> XYZ = [0.20654008, 0.12197225, 0.05136952]
>>> XYZ_w = [95.05 / 100, 100.00 / 100, 108.88 / 100]
>>> colour.XYZ_to_CAM16UCS(XYZ, XYZ_w=XYZ_w, L_A=L_A, Y_b=Y_b)
array([ 46.55542238,  40.22460974,  14.25288392])

3.12.8   DIN99 Colourspace and DIN99b, DIN99c, DIN99d Refined Formulas

>>> Lab = [41.52787529, 52.63858304, 26.92317922]
>>> colour.Lab_to_DIN99(Lab)
array([ 53.22821988,  28.41634656,   3.89839552])

3.12.9   ICaCb Colourspace

>>> XYZ_to_ICaCb(np.array([0.20654008, 0.12197225, 0.05136952]))
array([ 0.06875297,  0.05753352,  0.02081548])

3.12.10   IgPgTg Colourspace

>>> colour.XYZ_to_IgPgTg([0.20654008, 0.12197225, 0.05136952])
array([ 0.42421258,  0.18632491,  0.10689223])

3.12.11   IPT Colourspace

>>> colour.XYZ_to_IPT([0.20654008, 0.12197225, 0.05136952])
array([ 0.38426191,  0.38487306,  0.18886838])

3.12.12   Jzazbz Colourspace

>>> colour.XYZ_to_Jzazbz([0.20654008, 0.12197225, 0.05136952])
array([ 0.00535048,  0.00924302,  0.00526007])

3.12.13   hdr-CIELAB Colourspace

>>> colour.XYZ_to_hdr_CIELab([0.20654008, 0.12197225, 0.05136952])
array([ 51.87002062,  60.4763385 ,  32.14551912])

3.12.14   hdr-IPT Colourspace

>>> colour.XYZ_to_hdr_IPT([0.20654008, 0.12197225, 0.05136952])
array([ 25.18261761, -22.62111297,   3.18511729])

3.12.15   Hunter L,a,b Colour Scale

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> colour.XYZ_to_Hunter_Lab(XYZ)
array([ 34.92452577,  47.06189858,  14.38615107])

3.12.16   Hunter Rd,a,b Colour Scale

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> colour.XYZ_to_Hunter_Rdab(XYZ)
array([ 12.197225  ,  57.12537874,  17.46241341])

3.12.17   Oklab Colourspace

>>> colour.XYZ_to_Oklab([0.20654008, 0.12197225, 0.05136952])
array([ 0.51634019,  0.154695  ,  0.06289579])

3.12.18   OSA UCS Colourspace

>>> XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
>>> colour.XYZ_to_OSA_UCS(XYZ)
array([-3.0049979 ,  2.99713697, -9.66784231])

3.12.19   ProLab Colourspace

>>> colour.XYZ_to_ProLab([0.51634019, 0.15469500, 0.06289579])
array([1.24610688, 2.39525236, 0.41902126])

3.12.20   Ragoo and Farup (2021) Optimised IPT Colourspace

>>> colour.XYZ_to_IPT_Ragoo2021([0.20654008, 0.12197225, 0.05136952])
array([ 0.42248243,  0.2910514 ,  0.20410663])

3.12.21   Yrg Colourspace - Kirk (2019)

>>> colour.XYZ_to_Yrg([0.20654008, 0.12197225, 0.05136952])
array([ 0.13137801,  0.49037645,  0.37777388])

3.12.22   Y'CbCr Colour Encoding

>>> colour.RGB_to_YCbCr([1.0, 1.0, 1.0])
array([ 0.92156863,  0.50196078,  0.50196078])

3.12.23   YCoCg Colour Encoding

>>> colour.RGB_to_YCoCg([0.75, 0.75, 0.0])
array([ 0.5625,  0.375 ,  0.1875])

3.12.24   ICtCp Colour Encoding

>>> colour.RGB_to_ICtCp([0.45620519, 0.03081071, 0.04091952])
array([ 0.07351364,  0.00475253,  0.09351596])

3.12.25   HSV Colourspace

>>> colour.RGB_to_HSV([0.45620519, 0.03081071, 0.04091952])
array([ 0.99603944,  0.93246304,  0.45620519])

3.12.26   IHLS Colourspace

>>> colour.RGB_to_IHLS([0.45620519, 0.03081071, 0.04091952])
array([ 6.26236117,  0.12197943,  0.42539448])

3.12.27   Prismatic Colourspace

>>> colour.RGB_to_Prismatic([0.25, 0.50, 0.75])
array([ 0.75      ,  0.16666667,  0.33333333,  0.5       ])

3.12.28   RGB Colourspace and Transformations

>>> XYZ = [0.21638819, 0.12570000, 0.03847493]
>>> illuminant_XYZ = [0.34570, 0.35850]
>>> illuminant_RGB = [0.31270, 0.32900]
>>> chromatic_adaptation_transform = "Bradford"
>>> matrix_XYZ_to_RGB = [
...     [3.24062548, -1.53720797, -0.49862860],
...     [-0.96893071, 1.87575606, 0.04151752],
...     [0.05571012, -0.20402105, 1.05699594],
... ]
>>> colour.XYZ_to_RGB(
...     XYZ,
...     illuminant_XYZ,
...     illuminant_RGB,
...     matrix_XYZ_to_RGB,
...     chromatic_adaptation_transform,
... )
array([ 0.45595571,  0.03039702,  0.04087245])

3.12.29   RGB Colourspace Derivation

>>> p = [0.73470, 0.26530, 0.00000, 1.00000, 0.00010, -0.07700]
>>> w = [0.32168, 0.33767]
>>> colour.normalised_primary_matrix(p, w)
array([[  9.52552396e-01,   0.00000000e+00,   9.36786317e-05],
       [  3.43966450e-01,   7.28166097e-01,  -7.21325464e-02],
       [  0.00000000e+00,   0.00000000e+00,   1.00882518e+00]])

3.12.30   RGB Colourspaces

>>> sorted(colour.RGB_COLOURSPACES)
['ACES2065-1',
 'ACEScc',
 'ACEScct',
 'ACEScg',
 'ACESproxy',
 'ARRI Wide Gamut 3',
 'ARRI Wide Gamut 4',
 'Adobe RGB (1998)',
 'Adobe Wide Gamut RGB',
 'Apple RGB',
 'Best RGB',
 'Beta RGB',
 'Blackmagic Wide Gamut',
 'CIE RGB',
 'Cinema Gamut',
 'ColorMatch RGB',
 'DCDM XYZ',
 'DCI-P3',
 'DCI-P3-P',
 'DJI D-Gamut',
 'DRAGONcolor',
 'DRAGONcolor2',
 'DaVinci Wide Gamut',
 'Display P3',
 'Don RGB 4',
 'EBU Tech. 3213-E',
 'ECI RGB v2',
 'ERIMM RGB',
 'Ekta Space PS 5',
 'F-Gamut',
 'FilmLight E-Gamut',
 'ITU-R BT.2020',
 'ITU-R BT.470 - 525',
 'ITU-R BT.470 - 625',
 'ITU-R BT.709',
 'ITU-T H.273 - 22 Unspecified',
 'ITU-T H.273 - Generic Film',
 'Max RGB',
 'N-Gamut',
 'NTSC (1953)',
 'NTSC (1987)',
 'P3-D65',
 'Pal/Secam',
 'ProPhoto RGB',
 'Protune Native',
 'REDWideGamutRGB',
 'REDcolor',
 'REDcolor2',
 'REDcolor3',
 'REDcolor4',
 'RIMM RGB',
 'ROMM RGB',
 'Russell RGB',
 'S-Gamut',
 'S-Gamut3',
 'S-Gamut3.Cine',
 'SMPTE 240M',
 'SMPTE C',
 'Sharp RGB',
 'V-Gamut',
 'Venice S-Gamut3',
 'Venice S-Gamut3.Cine',
 'Xtreme RGB',
 'aces',
 'adobe1998',
 'prophoto',
 'sRGB']

3.12.31   OETFs

>>> sorted(colour.OETFS)
['ARIB STD-B67',
 'Blackmagic Film Generation 5',
 'DaVinci Intermediate',
 'ITU-R BT.2020',
 'ITU-R BT.2100 HLG',
 'ITU-R BT.2100 PQ',
 'ITU-R BT.601',
 'ITU-R BT.709',
 'ITU-T H.273 IEC 61966-2',
 'ITU-T H.273 Log',
 'ITU-T H.273 Log Sqrt',
 'SMPTE 240M']

3.12.32   EOTFs

>>> sorted(colour.EOTFS)
['DCDM',
 'DICOM GSDF',
 'ITU-R BT.1886',
 'ITU-R BT.2100 HLG',
 'ITU-R BT.2100 PQ',
 'ITU-T H.273 ST.428-1',
 'SMPTE 240M',
 'ST 2084',
 'sRGB']

3.12.33   OOTFs

>>> sorted(colour.OOTFS)
['ITU-R BT.2100 HLG', 'ITU-R BT.2100 PQ']

3.12.34   Log Encoding / Decoding

>>> sorted(colour.LOG_ENCODINGS)
['ACEScc',
 'ACEScct',
 'ACESproxy',
 'ARRI LogC3',
 'ARRI LogC4',
 'Canon Log',
 'Canon Log 2',
 'Canon Log 3',
 'Cineon',
 'D-Log',
 'ERIMM RGB',
 'F-Log',
 'F-Log2',
 'Filmic Pro 6',
 'L-Log',
 'Log2',
 'Log3G10',
 'Log3G12',
 'N-Log',
 'PLog',
 'Panalog',
 'Protune',
 'REDLog',
 'REDLogFilm',
 'S-Log',
 'S-Log2',
 'S-Log3',
 'T-Log',
 'V-Log',
 'ViperLog']

3.12.35   CCTFs Encoding / Decoding

>>> sorted(colour.CCTF_ENCODINGS)
['ACEScc',
 'ACEScct',
 'ACESproxy',
 'ARRI LogC3',
 'ARRI LogC4',
 'ARIB STD-B67',
 'Canon Log',
 'Canon Log 2',
 'Canon Log 3',
 'Cineon',
 'D-Log',
 'DCDM',
 'DICOM GSDF',
 'ERIMM RGB',
 'F-Log',
 'F-Log2',
 'Filmic Pro 6',
 'Gamma 2.2',
 'Gamma 2.4',
 'Gamma 2.6',
 'ITU-R BT.1886',
 'ITU-R BT.2020',
 'ITU-R BT.2100 HLG',
 'ITU-R BT.2100 PQ',
 'ITU-R BT.601',
 'ITU-R BT.709',
 'Log2',
 'Log3G10',
 'Log3G12',
 'PLog',
 'Panalog',
 'ProPhoto RGB',
 'Protune',
 'REDLog',
 'REDLogFilm',
 'RIMM RGB',
 'ROMM RGB',
 'S-Log',
 'S-Log2',
 'S-Log3',
 'SMPTE 240M',
 'ST 2084',
 'T-Log',
 'V-Log',
 'ViperLog',
 'sRGB']

3.12.36   Recommendation ITU-T H.273 Code points for Video Signal Type Identification

>>> colour.COLOUR_PRIMARIES_ITUTH273.keys()
dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 22, 23])
>>> colour.COLOUR_PRIMARIES_ITUTH273.keys()
>>> description = colour.models.describe_video_signal_colour_primaries(1)
===============================================================================
*                                                                             *
*   Colour Primaries: 1                                                       *
*   -------------------                                                       *
*                                                                             *
*   Primaries        : [[ 0.64  0.33]                                         *
*                       [ 0.3   0.6 ]                                         *
*                       [ 0.15  0.06]]                                        *
*   Whitepoint       : [ 0.3127  0.329 ]                                      *
*   Whitepoint Name  : D65                                                    *
*   NPM              : [[ 0.4123908   0.35758434  0.18048079]                 *
*                       [ 0.21263901  0.71516868  0.07219232]                 *
*                       [ 0.01933082  0.11919478  0.95053215]]                *
*   NPM -1           : [[ 3.24096994 -1.53738318 -0.49861076]                 *
*                       [-0.96924364  1.8759675   0.04155506]                 *
*                       [ 0.05563008 -0.20397696  1.05697151]]                *
*   FFmpeg Constants : ['AVCOL_PRI_BT709', 'BT709']                           *
*                                                                             *
===============================================================================
>>> colour.TRANSFER_CHARACTERISTICS_ITUTH273.keys()
dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
>>> description = (
...     colour.models.describe_video_signal_transfer_characteristics(1)
... )
===============================================================================
*                                                                             *
*   Transfer Characteristics: 1                                               *
*   ---------------------------                                               *
*                                                                             *
*   Function         : <function oetf_BT709 at 0x165bb3550>                   *
*   FFmpeg Constants : ['AVCOL_TRC_BT709', 'BT709']                           *
*                                                                             *
===============================================================================
>>> colour.MATRIX_COEFFICIENTS_ITUTH273.keys()
dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
>>> description = colour.models.describe_video_signal_matrix_coefficients(
...     1
... )
===============================================================================
*                                                                             *
*   Matrix Coefficients: 1                                                    *
*   ----------------------                                                    *
*                                                                             *
*   Matrix Coefficients : [ 0.2126  0.0722]                                   *
*   FFmpeg Constants    : ['AVCOL_SPC_BT709', 'BT709']                        *
*                                                                             *
===============================================================================

3.13   Colour Notation Systems - colour.notation

3.13.1   Munsell Value

>>> colour.munsell_value(12.23634268)
4.0824437076525664
>>> sorted(colour.MUNSELL_VALUE_METHODS)
['ASTM D1535',
 'Ladd 1955',
 'McCamy 1987',
 'Moon 1943',
 'Munsell 1933',
 'Priest 1920',
 'Saunderson 1944',
 'astm2008']

3.13.2   Munsell Colour

>>> colour.xyY_to_munsell_colour([0.38736945, 0.35751656, 0.59362000])
'4.2YR 8.1/5.3'
>>> colour.munsell_colour_to_xyY("4.2YR 8.1/5.3")
array([ 0.38736945,  0.35751656,  0.59362   ])

3.14   Optical Phenomena - colour.phenomena

>>> colour.rayleigh_scattering_sd()
SpectralDistribution([[  3.60000000e+02,   5.99101337e-01],
                      [  3.61000000e+02,   5.92170690e-01],
                      [  3.62000000e+02,   5.85341006e-01],
                      ...
                      [  7.78000000e+02,   2.55208377e-02],
                      [  7.79000000e+02,   2.53887969e-02],
                      [  7.80000000e+02,   2.52576106e-02]],
                     interpolator=SpragueInterpolator,
                     interpolator_args={},
                     extrapolator=Extrapolator,
                     extrapolator_args={'right': None, 'method': 'Constant', 'left': None})

3.15   Light Quality - colour.quality

3.15.1   Colour Fidelity Index

>>> colour.colour_fidelity_index(colour.SDS_ILLUMINANTS["FL2"])
70.120825477833037
>>> sorted(colour.COLOUR_FIDELITY_INDEX_METHODS)
['ANSI/IES TM-30-18', 'CIE 2017']

3.15.2   Colour Rendering Index

>>> colour.colour_quality_scale(colour.SDS_ILLUMINANTS["FL2"])
64.111703163816699
>>> sorted(colour.COLOUR_QUALITY_SCALE_METHODS)
['NIST CQS 7.4', 'NIST CQS 9.0']

3.15.3   Colour Quality Scale

>>> colour.colour_rendering_index(colour.SDS_ILLUMINANTS["FL2"])
64.233724121664807

3.15.4   Academy Spectral Similarity Index (SSI)

>>> colour.spectral_similarity_index(
...     colour.SDS_ILLUMINANTS["C"], colour.SDS_ILLUMINANTS["D65"]
... )
94.0

3.16   Spectral Up-Sampling & Recovery - colour.recovery

3.16.1   Reflectance Recovery

>>> colour.XYZ_to_sd([0.20654008, 0.12197225, 0.05136952])
SpectralDistribution([[  3.60000000e+02,   8.40144095e-02],
                      [  3.65000000e+02,   8.41264236e-02],
                      [  3.70000000e+02,   8.40057597e-02],
                      ...
                      [  7.70000000e+02,   4.46743012e-01],
                      [  7.75000000e+02,   4.46817187e-01],
                      [  7.80000000e+02,   4.46857696e-01]],
                     SpragueInterpolator,
                     {},
                     Extrapolator,
                     {'method': 'Constant', 'left': None, 'right': None})

>>> sorted(colour.REFLECTANCE_RECOVERY_METHODS)
['Jakob 2019', 'Mallett 2019', 'Meng 2015', 'Otsu 2018', 'Smits 1999']

3.16.2   Camera RGB Sensitivities Recovery

>>> illuminant = colour.colorimetry.SDS_ILLUMINANTS["D65"]
>>> sensitivities = colour.characterisation.MSDS_CAMERA_SENSITIVITIES[
...     "Nikon 5100 (NPL)"
... ]
>>> reflectances = [
...     sd.copy().align(
...         colour.recovery.SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017
...     )
...     for sd in colour.characterisation.SDS_COLOURCHECKERS[
...         "BabelColor Average"
...     ].values()
... ]
>>> reflectances = colour.colorimetry.sds_and_msds_to_msds(reflectances)
>>> RGB = colour.colorimetry.msds_to_XYZ(
...     reflectances,
...     method="Integration",
...     cmfs=sensitivities,
...     illuminant=illuminant,
...     k=0.01,
...     shape=colour.recovery.SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
... )
>>> colour.recovery.RGB_to_msds_camera_sensitivities_Jiang2013(
...     RGB,
...     illuminant,
...     reflectances,
...     colour.recovery.BASIS_FUNCTIONS_DYER2017,
...     colour.recovery.SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
... )
RGB_CameraSensitivities([[  4.00000000e+02,   7.22815777e-03,   9.22506480e-03,
                           -9.88368972e-03],
                         [  4.10000000e+02,  -8.50457609e-03,   1.12777480e-02,
                            3.86248655e-03],
                         [  4.20000000e+02,   4.58191132e-02,   7.15520948e-02,
                            4.04068293e-01],
                         ...
                         [  6.80000000e+02,   4.08276173e-02,   5.55290476e-03,
                            1.39907862e-03],
                         [  6.90000000e+02,  -3.71437574e-03,   2.50935640e-03,
                            3.97652622e-04],
                         [  7.00000000e+02,  -5.62256563e-03,   1.56433970e-03,
                            5.84726936e-04]],
                        ['red', 'green', 'blue'],
                        SpragueInterpolator,
                        {},
                        Extrapolator,
                        {'method': 'Constant', 'left': None, 'right': None})

3.17   Correlated Colour Temperature Computation Methods - colour.temperature

>>> colour.uv_to_CCT([0.1978, 0.3122])
array([  6.50751282e+03,   3.22335875e-03])
>>> sorted(colour.UV_TO_CCT_METHODS)
['Krystek 1985', 'Ohno 2013', 'Planck 1900', 'Robertson 1968', 'ohno2013', 'robertson1968']
>>> sorted(colour.XY_TO_CCT_METHODS)
['CIE Illuminant D Series',
 'Hernandez 1999',
 'Kang 2002',
 'McCamy 1992',
 'daylight',
 'hernandez1999',
 'kang2002',
 'mccamy1992']

3.18   Colour Volume - colour.volume

>>> colour.RGB_colourspace_volume_MonteCarlo(
...     colour.RGB_COLOURSPACE_RGB["sRGB"]
... )
821958.30000000005

3.19   Geometry Primitives Generation - colour.geometry

>>> colour.primitive("Grid")
(array([ ([-0.5,  0.5,  0. ], [ 0.,  1.], [ 0.,  0.,  1.], [ 0.,  1.,  0.,  1.]),
       ([ 0.5,  0.5,  0. ], [ 1.,  1.], [ 0.,  0.,  1.], [ 1.,  1.,  0.,  1.]),
       ([-0.5, -0.5,  0. ], [ 0.,  0.], [ 0.,  0.,  1.], [ 0.,  0.,  0.,  1.]),
       ([ 0.5, -0.5,  0. ], [ 1.,  0.], [ 0.,  0.,  1.], [ 1.,  0.,  0.,  1.])],
      dtype=[('position', '<f4', (3,)), ('uv', '<f4', (2,)), ('normal', '<f4', (3,)), ('colour', '<f4', (4,))]), array([[0, 2, 1],
       [2, 3, 1]], dtype=uint32), array([[0, 2],
       [2, 3],
       [3, 1],
       [1, 0]], dtype=uint32))
>>> sorted(colour.PRIMITIVE_METHODS)
['Cube', 'Grid']
>>> colour.primitive_vertices("Quad MPL")
array([[ 0.,  0.,  0.],
       [ 1.,  0.,  0.],
       [ 1.,  1.,  0.],
       [ 0.,  1.,  0.]])
>>> sorted(colour.PRIMITIVE_VERTICES_METHODS)
['Cube MPL', 'Grid MPL', 'Quad MPL', 'Sphere']

3.20   Plotting - colour.plotting

Most of the objects are available from the colour.plotting namespace:

>>> from colour.plotting import *
>>> colour_style()

3.20.1   Visible Spectrum

>>> plot_visible_spectrum("CIE 1931 2 Degree Standard Observer")

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Visible_Spectrum.png

3.20.2   Spectral Distribution

>>> plot_single_illuminant_sd("FL1")

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Illuminant_F1_SD.png

3.20.3   Blackbody

>>> blackbody_sds = [
...     colour.sd_blackbody(i, colour.SpectralShape(0, 10000, 10))
...     for i in range(1000, 15000, 1000)
... ]
>>> plot_multi_sds(
...     blackbody_sds,
...     y_label="W / (sr m$^2$) / m",
...     plot_kwargs={"use_sd_colours": True, "normalise_sd_colours": True},
...     legend_location="upper right",
...     bounding_box=(0, 1250, 0, 2.5e6),
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Blackbodies.png

3.20.4   Colour Matching Functions

>>> plot_single_cmfs(
...     "Stockman & Sharpe 2 Degree Cone Fundamentals",
...     y_label="Sensitivity",
...     bounding_box=(390, 870, 0, 1.1),
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Cone_Fundamentals.png

3.20.5   Luminous Efficiency

>>> sd_mesopic_luminous_efficiency_function = (
...     colour.sd_mesopic_luminous_efficiency_function(0.2)
... )
>>> plot_multi_sds(
...     (
...         sd_mesopic_luminous_efficiency_function,
...         colour.PHOTOPIC_LEFS["CIE 1924 Photopic Standard Observer"],
...         colour.SCOTOPIC_LEFS["CIE 1951 Scotopic Standard Observer"],
...     ),
...     y_label="Luminous Efficiency",
...     legend_location="upper right",
...     y_tighten=True,
...     margins=(0, 0, 0, 0.1),
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Luminous_Efficiency.png

3.20.6   Colour Checker

>>> from colour.characterisation.dataset.colour_checkers.sds import (
...     COLOURCHECKER_INDEXES_TO_NAMES_MAPPING,
... )
>>> plot_multi_sds(
...     [
...         colour.SDS_COLOURCHECKERS["BabelColor Average"][value]
...         for key, value in sorted(
...             COLOURCHECKER_INDEXES_TO_NAMES_MAPPING.items()
...         )
...     ],
...     plot_kwargs={
...         "use_sd_colours": True,
...     },
...     title=("BabelColor Average - " "Spectral Distributions"),
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_BabelColor_Average.png

>>> plot_single_colour_checker(
...     "ColorChecker 2005", text_kwargs={"visible": False}
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_ColorChecker_2005.png

3.20.7   Chromaticities Prediction

>>> plot_corresponding_chromaticities_prediction(
...     2, "Von Kries", "Bianco 2010"
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Chromaticities_Prediction.png

3.20.8   Chromaticities

>>> import numpy as np
>>> RGB = np.random.random((32, 32, 3))
>>> plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931(
...     RGB,
...     "ITU-R BT.709",
...     colourspaces=["ACEScg", "S-Gamut", "Pointer Gamut"],
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png

3.20.9   Colour Rendering Index

>>> plot_single_sd_colour_rendering_index_bars(
...     colour.SDS_ILLUMINANTS["FL2"]
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_CRI.png

3.20.10   ANSI/IES TM-30-18 Colour Rendition Report

>>> plot_single_sd_colour_rendition_report(colour.SDS_ILLUMINANTS["FL2"])

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Colour_Rendition_Report.png

3.20.11   Gamut Section

>>> plot_visible_spectrum_section(
...     section_colours="RGB", section_opacity=0.15
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Plot_Visible_Spectrum_Section.png

>>> plot_RGB_colourspace_section(
...     "sRGB", section_colours="RGB", section_opacity=0.15
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Plot_RGB_Colourspace_Section.png

3.20.12   Colour Temperature

>>> plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(
...     ["A", "B", "C"]
... )

https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png

4   User Guide

4.1   Installation

Colour and its primary dependencies can be easily installed from the Python Package Index by issuing this command in a shell:

$ pip install --user colour-science

The detailed installation procedure for the secondary dependencies is described in the Installation Guide.

Colour is also available for Anaconda from Continuum Analytics via conda-forge:

$ conda install -c conda-forge colour-science

4.2   Tutorial

The static tutorial provides an introduction to Colour. An interactive version is available via Google Colab.

4.3   How-To

The Google Colab How-To guide for Colour shows various techniques to solve specific problems and highlights some interesting use cases.

4.4   Contributing

If you would like to contribute to Colour, please refer to the following Contributing guide.

4.5   Changes

The changes are viewable on the Releases page.

4.6   Bibliography

The bibliography is available on the Bibliography page.

It is also viewable directly from the repository in BibTeX format.

5   API Reference

The main technical reference for Colour is the API Reference.

6   See Also

6.1   Software

Python

Go

.NET

Julia

Matlab & Octave

7   Code of Conduct

The Code of Conduct, adapted from the Contributor Covenant 1.4, is available on the Code of Conduct page.

8   Contact & Social

The Colour Developers can be reached via different means:

9   Thank You!

Coffee Sponsors

Anonymous

Cedric Lejeune

10   About

Colour by Colour Developers
Copyright 2013 Colour Developers – [email protected]
This software is released under terms of New BSD License: https://opensource.org/licenses/BSD-3-Clause

More Repositories

1

colour-demosaicing

CFA (Colour Filter Array) demosaicing algorithms for Python
Jupyter Notebook
276
star
2

awesome-colour

Curated list of awesome colour science resources 😎
Python
263
star
3

colour-checker-detection

Colour checker detection with Python
Jupyter Notebook
218
star
4

colour-nuke

Colour - Nuke
Jupyter Notebook
202
star
5

colour-science-precis

Colour Science Precis for the CGI Artist
HTML
161
star
6

colour-hdri

HDRI / Radiance image processing algorithms for Python
Jupyter Notebook
133
star
7

flask-compress

Compress responses of your Flask application.
Python
116
star
8

colour-datasets

Colour science datasets for use with Colour
Python
54
star
9

colour-analysis

Image analysis tools based on Colour and Vispy
Python
43
star
10

colour-visuals

WebGPU-based visuals for colour science applications
Python
32
star
11

MunsellAndKubelkaMunkToolbox

The Munsell and Kubelka-Munk Toolbox
M
28
star
12

gamut-mapping-ramblings

Gamut Mapping Ramblings
Jupyter Notebook
26
star
13

colour-notebooks

Colour - Jupyter Notebooks
Jupyter Notebook
22
star
14

colour-analysis-three.js

Image analysis tools based on Colour and Three.js
JavaScript
20
star
15

colour-unity

Colour science resources for use with Unity.
Jupyter Notebook
15
star
16

aces-retrospective-and-enhancements

ACES - Retrospective and Enhancements
TeX
14
star
17

smits1999

An RGB to Spectrum Conversion for Reflectances - Smits (1999)
MATLAB
12
star
18

GSoC

Google Summary of Code - Colour Science for Python
12
star
19

colour-science.org

https://www.colour-science.org
HTML
10
star
20

PGMA_v2.1

Public Gamut Mapping Algorithm (PGMA) C Source Code - Morovic (2001)
C
8
star
21

colour-mitsuba

Various resources for Mitsuba 3
Python
8
star
22

colour-maya

Colour - Maya
Python
8
star
23

alshaders

C++
6
star
24

colour-spectroscope

Colour - Spectroscope
Python
6
star
25

colour-ocean

Various resources for Eclat Digital - Ocean Light Simulator
Python
6
star
26

colour-demosaicing-examples-datasets

Colour - Demosaicing - Examples Datasets
5
star
27

colour-dash

Various colour science Dash apps built on top of Colour
Python
4
star
28

cinematiccolor-ramblings

HTML
4
star
29

colour-substance

Colour - Substance
4
star
30

colour-specio

Python
4
star
31

colour-ramblings

Colour Ramblings
Jupyter Notebook
4
star
32

colour-branding

Colour - Branding
Python
3
star
33

prysm

A Python optics module
Python
3
star
34

colour-vagrant

Colour - Vagrant Environment
3
star
35

colour-demosaicing-tests-datasets

Colour - Demosaicing - Tests Datasets
2
star
36

colour-benchmarks

Python
2
star
37

colour-hdri-examples-datasets

Colour - HDRI - Examples Datasets
2
star
38

colour-webhook

Various "webhook" resources for use with https://www.colour-science.org.
Python
1
star
39

colour-auto

Automatic colour conversion tool for Colour .
Python
1
star
40

colour-playground

A repository leveraging Binder to play with Colour.
Jupyter Notebook
1
star
41

colour-website

Colour - Website
HTML
1
star
42

artifacts

1
star
43

colour-hdri-tests-datasets

Colour - HDRI - Tests Datasets
1
star
44

colour-science.devcontainer

VSCode devcontainer for colour-science development
Dockerfile
1
star
45

colour-checker-detection-examples-datasets

Colour - Checker Detection - Examples Datasets
1
star
46

colour-checker-detection-tests-datasets

Colour - Checker Detection - Tests Datasets
1
star