• Stars
    star
    811
  • Rank 56,215 (Top 2 %)
  • Language SystemVerilog
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

VeeR EH1 core

VeeR EH1 RISC-V Core

This repository contains the VeeR EH1 design RTL.

License

By contributing to this project, you agree that your contribution is governed by Apache-2.0.
Files under the tools directory may be available under a different license. Please review individual files for details.

Directory Structure

├── configs                 # Configurations Dir
│   └── snapshots           # Where generated configuration files are created
├── design                  # Design root dir
│   ├── dbg                 # Debugger
│   ├── dec                 # Decode, Registers and Exceptions
│   ├── dmi                 # DMI block
│   ├── exu                 # EXU (ALU/MUL/DIV)
│   ├── ifu                 # Fetch & Branch Predictor
│   ├── include             
│   ├── lib
│   └── lsu                 # Load/Store
├── docs
├── tools                   # Scripts/Makefiles
└── testbench               # (Very) simple testbench
    ├── asm                 # Example test files
    └── hex                 # Canned demo hex files

Dependencies

  • Verilator (4.102 or later) must be installed on the system if running with verilator
  • If adding/removing instructions, espresso must be installed (used by tools/coredecode)
  • A RISC-V tool chain (based on gcc version 7.3 or higher) must be installed so that it can be used to prepare RISC-V binaries to run.

Quickstart guide

  1. Clone the repository
  2. Setup RV_ROOT to point to the path in your local filesystem
  3. Determine your configuration {optional}
  4. Run make with tools/Makefile

Release Notes for this version

Please see release notes for changes and bug fixes in this version of VeeR.

Configurations

VeeR can be configured by running the $RV_ROOT/configs/veer.config script:

% $RV_ROOT/configs/veer.config -h for detailed help options

For example to build with a DCCM of size 64 Kb:

% $RV_ROOT/configs/veer.config -dccm_size=64

This will update the default snapshot in $PWD/snapshots/default/ with parameters for a 64K DCCM. To unset a parameter, add -unset=PARAM option to veer.config.

Add -snapshot=dccm64, for example, if you wish to name your build snapshot dccm64 and refer to it during the build.

There are four predefined target configurations: default, default_ahb, default_pd, high_perf that can be selected via the -target=name option in veer.config.

This script derives the following consistent set of include files:

snapshots/default
├── common_defines.vh                       # `defines for testbench or design
├── defines.h                               # #defines for C/assembly headers
├── pd_defines.vh                           # `defines for physical design
├── perl_configs.pl                         # Perl %configs hash for scripting
├── pic_map_auto.h                          # PIC memory map based on configure size
└── whisper.json                            # JSON file for veer-iss

Building a model

While in a work directory:

  1. Set the RV_ROOT environment variable to the root of the VeeR directory structure.

    Example for bash shell: export RV_ROOT=/path/to/veer
    Example for csh or its derivatives: setenv RV_ROOT /path/to/veer

  2. Create your specific configuration

    (Skip if default is sufficient)
    (Name your snapshot to distinguish it from the default. Without an explicit name, it will update/override the default snapshot)

    For example if mybuild is the name for the snapshot: $RV_ROOT/configs/veer.config [configuration options..] -snapshot=mybuild

    Snapshots are placed in the ./snapshots directory

Building an FPGA speed optimized model:
Use -fpga_optimize=1 option in veer.config to build a model that removes clock gating logic from flop model so that the FPGA builds can run at higher speeds. This is now the default option for targets other than default_pd.

Building a Power optimized model (ASIC flows):
Use -fpga_optimize=0 option in veer.config to build a model that enables clock gating logic into the flop model so that the ASIC flows get a better power footprint. This is now the default option for targetdefault_pd.

Running RTL simulations

To run a simple Hello World program in Verilator, use:

make -f $RV_ROOT/tools/Makefile

This command will build a Verilator model of VeeR EH1 with an AXI bus, and execute a short sequence of instructions that writes out "HELLO WORLD" to the bus.

The simulation produces output on the screen like:

VerilatorTB: Start of sim

-------------------------
Hello World from VeeR EH1
-------------------------

Finished : minstret = 443, mcycle = 1372
See "exec.log" for execution trace with register updates..

TEST_PASSED

The simulation generates following files:

  • console.log contains what the cpu writes to the console address of 0xd0580000.
  • exec.log shows instruction trace with GPR updates.
  • trace_port.csv contains a log of the trace port.

When debug=1 is provided, a vcd file sim.vcd is created and can be browsed by gtkwave or similar waveform viewers.

You can re-execute the simulation using: ./obj_dir/Vtb_top or make -f $RV_ROOT/tools/Makefile verilator.

The simulation run/build command has the following generic form:

make -f $RV_ROOT/tools/Makefile [<simulator>] [debug=1] [snapshot=<snapshot>] [target=<target>] [TEST=<test>] [TEST_DIR=<path_to_test_dir>] [CONF_PARAMS=<veer.config option>]

where:

  • <simulator> - can be verilator (by default) irun - Cadence xrun, vcs - Synopsys VCS, vlog - Mentor Questa, riviera - Aldec Riviera-PRO; if not provided, make cleans the work directory, builds a Verilator executable and runs a test.
  • debug=1 - allows VCD generation for verilator, VCS and Riviera-PRO and SHM waves for irun option.
  • <target> - predefined CPU configurations default (by default), default_ahb, default_pd, high_perf
  • TEST - allows to run a C (.c) or assembly (.s) test, hello_world is run by default
  • TEST_DIR - alternative to test source directory testbench/asm
  • <snapshot> - run and build executable model of custom CPU configuration, remember to provide snapshot argument for runs on custom configurations.
  • CONF_PARAMS - configuration parameter for veer.config, ex: CONF_PARAMS=-unset=dccm_enable to build with no DCCM

Example:

make -f $RV_ROOT/tools/Makefile verilator TEST=cmark

will simulate the testbench/asm/cmark.c program with Verilator on the default target.

If you want to compile a test only, you can run:

make -f $RV_ROOT/tools/Makefile program.hex TEST=<test> [TEST_DIR=/path/to/dir]

The Makefile uses $RV_ROOT/testbench/link.ld file by default to build test executable.
User can provide test specific linker file in form <test_name>.ld to build the test executable, in the same directory with the test source.

User also can create a test specific makefile in form <test_name>.makefile, contaning building instructions how to create a program.hex file used by the simulation. The private Makefile should be in the same directory as the test source.
(the program.hex file is loaded to instruction and data bus memory slaves and optionally to DCCM/ICCM at the beginning of simulation).

Note: You may need to delete program.hex file from work directory, when running a new test.

The $RV_ROOT/testbench/asm directory contains thefollowing tests ready to simulate:

  • hello_world - default test to run, prints Hello World message to screen and console.log
  • hello_world_dccm - same as above, but takes the string from preloaded DCCM.
  • hello_world_iccm - same as above, but CPU copies the code from external memory to ICCM via AXI LSU to DMA bridge and then jumps there. The test runs only on CPU configurations with ICCM and AXI bus.
  • cmark - coremark benchmark running with code and data in external memories
  • cmark_dccm - same as above, running data and stack from DCCM (faster)
  • cmark_iccm - same as above, but with code preloaded to iccm - runs only on CPU with ICCM; use the CONF_PARAMS=-set=iccm_enable argument to make to build CPU with ICCM
  • dhry - dhrystone benchmark - example of multi source files program

The $RV_ROOT/testbench/hex directory contains precompiled hex files of the tests, ready for simulation in case RISC-V SW tools are not installed.

More Repositories

1

chisel

Chisel: A Modern Hardware Design Language
Scala
3,926
star
2

rocket-chip

Rocket Chip Generator
Scala
3,177
star
3

verible

Verible is a suite of SystemVerilog developer tools, including a parser, style-linter, formatter and language server
C++
1,362
star
4

firrtl

Flexible Intermediate Representation for RTL
Scala
720
star
5

chisel-template

A template project for beginning new Chisel work
Scala
575
star
6

Surelog

SystemVerilog 2017 Pre-processor, Parser, Elaborator, UHDM Compiler. Provides IEEE Design/TB C/C++ VPI and Python AST & UHDM APIs. Compiles on Linux gcc, Windows msys2-gcc & msvc, OsX
C++
362
star
7

f4pga

FOSS Flow For FPGA
Python
356
star
8

sv-tests

Test suite designed to check compliance with the SystemVerilog standard.
SystemVerilog
290
star
9

VeeRwolf

FuseSoC-based SoC for VeeR EH1 and EL2
Verilog
283
star
10

f4pga-examples

Example designs showing different ways to use F4PGA toolchains.
Verilog
263
star
11

Cores-VeeR-EL2

VeeR EL2 Core
SystemVerilog
244
star
12

Cores-VeeR-EH2

SystemVerilog
213
star
13

dromajo

RISC-V RV64GC emulator designed for RTL co-simulation
C++
210
star
14

UHDM

Universal Hardware Data Model. A complete modeling of the IEEE SystemVerilog Object Model with VPI Interface, Elaborator, Serialization, Visitor and Listener. Used as a compiled interchange format in between SystemVerilog tools. Compiles on Linux gcc, Windows msys2-gcc & msvc, OsX
C++
198
star
15

Caliptra

Caliptra IP and firmware for integrated Root of Trust block
177
star
16

synlig

SystemVerilog support for Yosys
Verilog
160
star
17

silicon-notebooks

Jupyter Notebook
156
star
18

treadle

Chisel/Firrtl execution engine
Scala
153
star
19

aib-phy-hardware

Advanced Interface Bus (AIB) die-to-die hardware open source
Verilog
118
star
20

VeeR-ISS

C++
116
star
21

t1

Scala
112
star
22

fpga-tool-perf

FPGA tool performance profiling
Python
101
star
23

fasm

FPGA Assembly (FASM) Parser and Generator
Python
89
star
24

caliptra-sw

Caliptra software (ROM, FMC, runtime firmware), and libraries/tools needed to build and test
Rust
85
star
25

yosys-f4pga-plugins

Plugins for Yosys developed as part of the F4PGA project.
Verilog
81
star
26

omnixtend

OmniXtend cache coherence protocol
TeX
77
star
27

playground

chipyard in mill :P
Scala
74
star
28

uvm-verilator

SystemVerilog
70
star
29

caliptra-rtl

HW Design Collateral for Caliptra RoT IP
SystemVerilog
68
star
30

riscv-vector-tests

Unit tests generator for RVV 1.0
Go
52
star
31

fpga-interchange-schema

Cap'n Proto
51
star
32

rocket-tools

Software tools that support rocket-chip (GNU toolchain, ISA simulator, tests)
Shell
51
star
33

AIB-specification

Home of the Advanced Interface Bus (AIB) specification.
46
star
34

firrtl-spec

The specification for the FIRRTL language
TeX
45
star
35

cde

A Scala library for Context-Dependent Environments
Scala
44
star
36

python-fpga-interchange

Python interface to FPGA interchange format
Python
41
star
37

Cores-SweRV_fpga

Tcl
39
star
38

espresso

C
34
star
39

UHDM-integration-tests

Verilog
30
star
40

f4pga-sdf-timing

Python library for working Standard Delay Format (SDF) Timing Annotation files.
Python
28
star
41

aib-phy-generator

AIB Generator: Analog hardware compiler for AIB PHY
Shell
28
star
42

verible-linter-action

Automatic SystemVerilog linting in github actions with the help of Verible
Python
24
star
43

riscv-fw-infrastructure

SDK Firmware infrastructure, contain RTOS Abstraction Layer, demos, SweRV Processor Support Package, and more ...
C
24
star
44

systemc-compiler

Intel Compiler for SystemC
C++
23
star
45

tilelink

Scala
23
star
46

aib-protocols

SystemVerilog
22
star
47

chisel-nix

Nix scripts used to manage the chisel projects.
Nix
21
star
48

ideas

18
star
49

f4pga-xc7-bram-patch

Tool for updating the contents of BlockRAMs found in Xilinx 7 series bitstreams.
LLVM
17
star
50

caliptra-dpe

High level module that implements DPE and defines high-level traits that are used to communicate with the crypto peripherals and PCRs
Rust
16
star
51

diplomacy

Scala
16
star
52

homebrew-verible

Ruby
16
star
53

rocket-chip-inclusive-cache

An RTL generator for a last-level shared inclusive TileLink cache controller
Scala
15
star
54

rocket-chip-fpga-shells

Wrapper shells enabling designs generated by rocket-chip to map onto certain FPGA boards
Scala
15
star
55

chisel-interface

The 'missing header' for Chisel
Scala
15
star
56

rocket

The working draft to split rocket core out from rocket chip
Scala
14
star
57

OmnixtendEndpoint

Hardware implementation of an OmniXtend Memory Endpoint/Lowest Point of Coherence.
Bluespec
14
star
58

f4pga-bitstream-viewer

Tool for graphically viewing FPGA bitstream files and their connection to FASM features.
Python
14
star
59

rocket-chip-blocks

RTL blocks compatible with the Rocket Chip Generator
Scala
14
star
60

Cores-SweRV-Support-Package

Processor support packages
Python
14
star
61

tools-cocotb-verilator-build

Makefile
13
star
62

f4pga-xc-fasm2bels

Library to convert a FASM file into BELs importable into Vivado.
Verilog
11
star
63

foundation

Governance-related CHIPS Alliance documents, guides etc.
10
star
64

f4pga-v2x

Tool for converting specialized annotated Verilog models into XML needed for Verilog to Routing flow.
Python
10
star
65

tree-sitter-firrtl

FIRRTL grammar for tree-sitter
C++
9
star
66

fpga-interchange-tests

Repository to run extensive tests on the FPGA interchange format
Verilog
8
star
67

verible-formatter-action

SystemVerilog
7
star
68

f4pga-xc-fasm

Python
6
star
69

rocket-pcb

PCB libraries and templates for rocket-chip based FPGA/ASIC designs
Verilog
6
star
70

f4pga-database-visualizer

JavaScript
6
star
71

rocket-uncore

Scala
6
star
72

tac

CHIPS Alliance Technical Advisory Council
5
star
73

caliptra-ureg

Rust
5
star
74

sv-tests-results

Output of the sv-tests runs.
HTML
5
star
75

rvdecoderdb

The Scala parser to parse riscv/riscv-opcodes generate
Scala
5
star
76

chips-alliance-website

SCSS
3
star
77

caliptra-ss

HW Design Collateral for Caliptra Subsystem, which comprises Caliptra RoT IP and additional manufacturer controls.
SystemVerilog
3
star
78

amba

Scala
3
star
79

i3c-core

SystemVerilog
3
star
80

f4pga-rr-graph

Collection of Routing Resources Graph (RR Graph) libraries for VPR
Python
2
star
81

vtr-xml-utils

XSLT
2
star
82

firrtl-syntax

TextMate-compatible description of FIRRTL syntax for use with GitHub's Linguist
2
star
83

EasyCLA-code_only

1
star
84

EasyCLA-specs_and_code

1
star
85

artwork

CHIPS Alliance artwork
1
star
86

caliptra-cfi

Code-flow Integrity module to mitigate glitches and fault injections
Rust
1
star
87

rocket-pcblib

1
star
88

wg-analog

CHIPS Alliance Analog Working Group
1
star
89

idealchisel

Scala
1
star
90

verible-actions-common

1
star
91

firtool-resolver

Scala
1
star