• Stars
    star
    317
  • Rank 132,216 (Top 3 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 7 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This is the PyTorch implementation of VGG network trained on CIFAR10 dataset

pytorch-vgg-cifar10

This is the PyTorch implementation of VGG network trained on CIFAR10 dataset

Requirements.

[PyTorch] (https://github.com/pytorch/pytorch)

[torchvision] (https://github.com/pytorch/vision)

Update.

Adding support for CPU. Add --cpu can make the training or evaluation in cpu mode.

Download the model

The trained VGG model. 92.4% Accuracy VGG

Evaluation

# CUDA
wget http://www.cs.unc.edu/~cyfu/cifar10/model_best.pth.tar
python main.py --resume=./model_best.pth.tar -e
# or use CPU version
wget http://www.cs.unc.edu/~cyfu/cifar10/model_best_cpu.pth.tar
python main.py --resume=./model_best_cpu.pth.tar -e --cpu

Train with script! (16-bit precision)

./run.sh 

Using the run.sh script to generate the training log and models of different versions of VGG in 16-bit or 32-bit precision. Then use the ipython notebook plot.ipynb to view the results.

alt text