• Stars
    star
    335
  • Rank 125,904 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 7 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Simple downloader for pre-trained word vectors

chakin

chakin is a downloader for pre-trained word vectors. Supported many vectors

This library lets you download pre-trained word vectors without troublesome work.



Installation

To install chakin, simply:

$ pip install chakin

Usage

You can download pre-trained word vectors as follows:

$ python
>>> import chakin
>>> chakin.search(lang='English')
                   Name  Dimension                     Corpus VocabularySize  
2          fastText(en)        300                  Wikipedia           2.5M   
11         GloVe.6B.50d         50  Wikipedia+Gigaword 5 (6B)           400K   
12        GloVe.6B.100d        100  Wikipedia+Gigaword 5 (6B)           400K   
13        GloVe.6B.200d        200  Wikipedia+Gigaword 5 (6B)           400K   
14        GloVe.6B.300d        300  Wikipedia+Gigaword 5 (6B)           400K   
15       GloVe.42B.300d        300          Common Crawl(42B)           1.9M   
16      GloVe.840B.300d        300         Common Crawl(840B)           2.2M   
17    GloVe.Twitter.25d         25               Twitter(27B)           1.2M   
18    GloVe.Twitter.50d         50               Twitter(27B)           1.2M   
19   GloVe.Twitter.100d        100               Twitter(27B)           1.2M   
20   GloVe.Twitter.200d        200               Twitter(27B)           1.2M   
21  word2vec.GoogleNews        300          Google News(100B)           3.0M 

>>> chakin.download(number=2, save_dir='./') # select fastText(en)
Test: 100% ||               | Time: 0:00:02  60.7 MiB/s
'./wiki.en.vec'

Supported vectors

So far, chakin supports following word vectors:

Name Dimension Corpus VocabularySize Method Language
fastText(ar) 300 Wikipedia 610K fastText Arabic
fastText(de) 300 Wikipedia 2.3M fastText German
fastText(en) 300 Wikipedia 2.5M fastText English
fastText(es) 300 Wikipedia 985K fastText Spanish
fastText(fr) 300 Wikipedia 1.2M fastText French
fastText(it) 300 Wikipedia 871K fastText Italian
fastText(ja) 300 Wikipedia 580K fastText Japanese
fastText(ko) 300 Wikipedia 880K fastText Korean
fastText(pt) 300 Wikipedia 592K fastText Portuguese
fastText(ru) 300 Wikipedia 1.9M fastText Russian
fastText(zh) 300 Wikipedia 330K fastText Chinese
GloVe.6B.50d 50 Wikipedia+Gigaword 5 (6B) 400K GloVe English
GloVe.6B.100d 100 Wikipedia+Gigaword 5 (6B) 400K GloVe English
GloVe.6B.200d 200 Wikipedia+Gigaword 5 (6B) 400K GloVe English
GloVe.6B.300d 300 Wikipedia+Gigaword 5 (6B) 400K GloVe English
GloVe.42B.300d 300 Common Crawl(42B) 1.9M GloVe English
GloVe.840B.300d 300 Common Crawl(840B) 2.2M GloVe English
GloVe.Twitter.25d 25 Twitter(27B) 1.2M GloVe English
GloVe.Twitter.50d 50 Twitter(27B) 1.2M GloVe English
GloVe.Twitter.100d 100 Twitter(27B) 1.2M GloVe English
GloVe.Twitter.200d 200 Twitter(27B) 1.2M GloVe English
word2vec.GoogleNews 300 Google News(100B) 3.0M word2vec English
word2vec.Wiki-NEologd.50d 50 Wikipedia 335K word2vec + NEologd Japanese