Nano filesystem storage
A minimalistic, secure, type-safe, zero-dependencies, persistent data store.
Note If you want safely use it in electron app look at electron-nano-store
Usage
import { defineStore } from "fs-nano-store";
/**
* Declare types for you storage
*/
type Store = {
name: string,
role: 'admin' | 'user'
}
const { get, set, changes } = await defineStore<Store>('/path/to/storage-file.json')
get('name') // undefined
set('name', 'Alex')
get('name') // Alex
// Store is Type-safe
// TS Error: Argument of type '"wrong-role"' is not assignable to parameter of type '"admin" | "user"'.
set('role', 'wrong-role')
// fs-nano-store automatically tracks any storage-file.json changes.
// Additionally, you can addListener on the `changed` event that emits
// if the store file has been modified somehow outside defined store methods.
changes.addListener('changed', () => {
})
Note
Objects in store are immutable and will be deeply cloned on each
get
/set
.const obj = {} store.set('obj', obj) store.get('obj') === obj // false store.get('obj') === store.get('obj') // false store.get('obj').bar = 'baz' // will no have effect obj.bar = 'baz' // will not affected to stored data
Custom serializer
By default, all data is serialized in JSON using global JSON
.
So if you want to store more complex data types like Date
or Map
, or want to have custom stringify
/parse
logic,
you need to use your own serializer that supports those data types. Example with superjson:
import { defineStore } from 'fs-nano-store'
import superjson from 'superjson';
type Store = {
date: Date,
}
const store = defineStore<Store>('store-file.json', {
serializer: superjson
})
store.set('date', new Date)
store.get('date') // Date object
Migrating from v0.2.x to v0.3.x
In https://github.com/cawa-93/fs-nano-store/commit/bd2dfb50c92eadae68f6a12e406acf6daacd05f7 Was changed how exactly data saving to filesystem. Old store files are incompatible. You may need manually convert old data to new format by command:
const newDataStr = JSON.stringify(
Object.entries(serializer.parse(oldDataStr))
.map(([k,v]) => [k,serializer.stringify(v)])
)