There are no reviews yet. Be the first to send feedback to the community and the maintainers!
tensorflow-sequences-time-series-and-prediction
In this fourth course, you will learn how to build time series models in TensorFlow. You’ll first implement best practices to prepare time series data. You’ll also explore how RNNs and 1D ConvNets can be used for prediction. Finally, you’ll apply everything you’ve learned throughout the Specialization to build a sunspot prediction model using real-world dataconvolutional-neural-networks-tensorflow
In Course 2 of the deeplearning.ai TensorFlow Specialization, you will learn advanced techniques to improve the computer vision model you built in Course 1. You will explore how to work with real-world images in different shapes and sizes, visualize the journey of an image through convolutions to understand how a computer “sees” information, plot loss and accuracy, and explore strategies to prevent overfitting, including augmentation and dropout. Finally, Course 2 will introduce you to transfer learning and how learned features can be extracted from models.natural-language-processing-tensorflow
Natural Language processing in tensorflowMachineLearningwithPython
This Machine Learning with Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each. Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed!archive_ia
Mes archive pour l'intelligence artificielle(deep learning, machine learning, tensor-flow, computer vision, python, NLP, keras)advanced-computer-vision-with-tensorflow
Computer vision advenced tensorflow programconvolutional-neural-networks
Implement the foundational layers of CNNs (pooling, convolutions) and stack them properly in a deep network to solve multi-class image classification problems.essentiel-de-powerBI
Power BI est un ensemble de services logiciels, d’applications et de connecteurs qui œuvrent ensemble pour transformer des sources de données disparates en informations visuelles immersives et interactives. Vos données peuvent être sous forme de feuille de calcul Excel ou de collection d’entrepôts de données hybrides locaux ou sur le cloud. Power BI vous permet de vous connecter facilement à vos sources de données, de visualiser et de découvrir ce qui est important, et de partager ces informations avec qui vous voulez.crawlers
Web scraping is the process of using bots to extract content and data from a website. Unlike screen scraping, which only copies pixels displayed onscreen, web scraping extracts underlying HTML code and, with it, data stored in a database. The scraper can then replicate entire website content elsewhereessentieldeJavaScript
Internship
config_srv_ajax
la configuration du serveur wamp,pour l'acceptation d'autre url en dehors de notreadminVPS
Administration d'un serveur VPSL2DSI
Mes cours en licence 2 DSInouveautes_java_8
un-guinee
Le build de l'université numérique de guinée.hibernate
Mini projetrevision-react
routage-angular
linkedin-script-bash
L'essentiel du script Bash en linuxessentiel_sass
Dans ce cours, nous allons découvrir ensemble l'essentiel de sass.lesfondementsdelintelligenceartificielle
L'intelligence artificielle (IA) est un processus d'imitation de l'intelligence humaine qui repose sur la création et l'application d'algorithmes exécutés dans un environnement informatique dynamique. Son but est de permettre à des ordinateurs de penser et d'agir comme des êtres humains.DSIL2
les TP TD et leurs solutionsJPAHibernate
Dans ce projet, je vais créer un application de gestion de produit en JPA Hibernatechat-bot-rasa
base-deep-learning
Dans cette formation, nous allons apprendre les concepts de bases de Deep Learning et les calcules scientifiquesmbalou
wqu
decorateurs
Data-Science-Tools
In this course you’ll receive one of the most comprehensive overviews on open source and commercial tooling available for data science, and the skills on how to use them.git-status
school-program
school-programangular
camara
maitriser-maven
Grâce à Maven, vous allez pouvoir gérer les dépendances de votre projet et automatiser sa construction (compilation, test, production de livrable...)damaro
formation-react
ionic
computer_vision_lab
my all lab in computer visionmawatta
camara-coursera
coursera1
projet-php
agguinee
essentiel_less
Dans ce cours, nous allons découvrir ensemble l'essentiel de less.mon-projet-bootstrap
langageC
Quelques figure géometriques en console en langage Coverview_java_dev
RĂ©vision sur mes acquis en javacomprendregit
ProjetCsharp
Ce projet représente l'ensemble de nos TP et TD de semestre 1 L2 DSI à l'ISET Djerba 2018-2019fondementsdesmicroservices
Microservices - also known as the microservice architecture - is an architectural style that structures an application as a collection of services that are, Highly maintainable and testable, Loosely coupled, Independently deployable, Organized around business capabilities, Owned by a small teamchoisir-son-modele-de-machine-learning
Le Machine Learning, aussi appelé apprentissage automatique en français, est une forme d’intelligence artificielle permettant aux ordinateurs d’apprendre sans avoir été programmés explicitement à cet effet.parti2activite1
tutoflutter
Les bases de flutterjquery
activite1-ionic
essentiel-emmet-sass-compass
Sass is the most mature, stable, and powerful professional grade CSS extension language in the worldchat_bot_stage
springNotificationWithFirebase
Envoyer des notifications push à partir d'une application côté serveur Spring Boot à l'aide de FCMDecouvrir-docker
Partez à la découverte de Docker, une solution de virtualisation permettant de faire tourner des applications dans des conteneurs indépendants.aide-memoire-mdx
MDX is an authorable format that lets you seamlessly write JSX in your Markdown documents. You can import components, such as interactive charts or alerts, and embed them within your content. This makes writing long-form content with components a blastmicroservices
Microservices - also known as the microservice architecture - is an architectural style that structures an application as a collection of services that are, Highly maintainable and testable, Loosely coupled, Independently deployable, Organized around business capabilities, Owned by a small teamacm
Ce page regroupe du matériel pédagogique pour des enseignements des techniques factorielles, essentiellement l’analyse en composantes principales (ACP), l’analyse factorielle des correspondances (AFC), l’analyse des correspondances multiples (ACM), l’analyse factorielle des données mixtes (AFDM) et le positionnement multidimensionnel (multidimensional scaling – MDS).les-algorithmes-de-machine-en-python
Les principaux algorithmes du machine learning avec supervision sont les suivants : forêts aléatoires, arbres décisionnels, méthode du k plus proche voisin (k-NN), régression linéaire, classification naïve bayésienne, machine à vecteurs de support (SVM), régression logistique et boosting des gradients.reseau-neurone-tensorflow-2
TensorFlow est une bibliothèque open source de Machine Learning, créée par Google, permettant de développer et d’exécuter des applications de Machine Learning et de Deep Learninggit-et-gestion-de-code-1-sur-2
Git est un système de contrôle de version distribué gratuit et en licence open source. Il a été conçu pour traiter aussi bien des petits ou de très gros projets avec rapidité et efficacité.tensorflow
TensorFlow est une bibliothèque de Machine Learning, il s’agit d’une boîte à outils permettant de résoudre des problèmes mathématiques extrêmement complexes avec aisance. Elle permet aux chercheurs de développer des architectures d’apprentissage expérimentales et de les transformer en logiciels. Et open source crée par google.text-from-image
Dans ce projet j'ai utilisé la librairie EasyOCR qui est un projet open source de deep learning, qui permet d'extraire facilement du text à partir des images.statistique_pour_datascience
Cette dernière consistant à ressembler et analyser de grandes quantités de données structurées ou non pour en tirer des informations pertinentes. En effet, les données sont des informations brutes que les Data Scientists vont essayer d'exploiter.projetfinal
Data-Visualization-with-Python
Data visualization and some of the best practices when creating plots and visuals. The history and architecture of Matplotlib, and how to do basic plotting with Matplotlib. Generating different visualization tools using Matplotlib such as line plots, area plots, histograms, bar charts, box plots, and pie charts. Seaborn, another data visualization library in Python, and how to use it to create attractive statistical graphics. Folium, and how to use to create maps and visualize geospatial data.Analyse_semantique_latente
Cet article passe en revue l'analyse sémantique latente (LSA), une théorie de la signification ainsi qu'une méthode pour extraire ce sens de passages de texte, basée sur des statistiques calculs sur un ensemble de documents. LSA comme théorie du sens définit un espace sémantique latent où les documents et les mots individuels sont représentés sous forme de vecteurs. LSA en tant que technique de calcul utilise l'algèbre linéaire pour extraire les dimensions qui représentent cet espace. Cette représentation permet le calcul de la similarité entre les termes et les documents, la catégorisation des termes et documents, et résumé de grandes collections de documents en utilisant procédures automatisées qui imitent la façon dont les humains effectuent des tâches cognitives similaires. Nous présentons quelques détails techniques, divers exemples illustratifs et discutons d'un nombre de candidatures en linguistique, psychologie, sciences cognitives, éducation, sciences de l'information et analyse de données textuelles en général.essentiel_spring_boot
Spring Boot est une étape avancée qui implifier le démarrage et le développement de nouvelles applications Spring. Avec Spring Boot, des configurations de Spring sont atténuées. Spring Boot soutient des conteneurs embarqués (embedded containers). Cela permet des application web d'exécuter indépendemment sans déploiement sur Web ServerCognitive-Deep-Learning-with-TensorFlow
The majority of data in the world is unlabeled and unstructured, for instance images, sound, and text data. Shallow neural networks cannot easily capture relevant structures within this type of data, but deep networks are capable of discovering the hidden structures. In this course, you will use the TensorFlow library to apply deep learning on different types of data to solve real world problems.Statistique_pour_la_datascience
Dans cette formation vous trouverez entre autres : la statistique descriptive, la visualisation des données, les probabilités, les méthodes de Rééchantillonnage de données, les techniques de simulation, la statistique inférentielle, etcafc
Ce page regroupe du matériel pédagogique pour des enseignements des techniques factorielles, essentiellement l’analyse en composantes principales (ACP), l’analyse factorielle des correspondances (AFC), l’analyse des correspondances multiples (ACM), l’analyse factorielle des données mixtes (AFDM) et le positionnement multidimensionnel (multidimensional scaling – MDS).data_science_lab
Once you’ve completed the 8 lab projects, you will be able to source data, summarize it in statistics and visualizations, and model trends that power decision making at the business level. With your well-recognized Credly badge, you will be armed to let employers and colleagues know of your impressive achievement. The more you actively engage with your peers, the more you will get from the course. We know some of this material is super hard; we encourage you to stick with it, to ask for help, and to make the most of all the coursework and projects have to offer. In exchange for this free opportunity, we will be periodically asking you for your feedback. Please take providing your response seriously as it is the best tool we’ve got to improve the curriculum and learning experience. We are relying on you to help us make the course the best it can be well into the future.penseecritique
La pensée critique, c'est évaluer selon des critères pour porter un jugement. « La pensée critique est un processus qui consiste à examiner des idées ou des situations pour arriver à bien les comprendre, à en déterminer les implications ou les conséquences et à porter un jugement ou à éclairer une décisiondata-science
Bienvenu dans ce tutorie, aucours duquel nous allons découvrir la librairie pandas qui est l'une des libraire les plus importantes en python, lorsque nous voulons découvrir la data science. Avec cette librairie nous pouvons faire tout ce dont nous pouvons imaginer en data science en pythonacp
Cette page regroupe du matériel pédagogique pour des enseignements des techniques factorielles, essentiellement l’analyse en composantes principales (ACP), l’analyse factorielle des correspondances (AFC), l’analyse des correspondances multiples (ACM), l’analyse factorielle des données mixtes (AFDM) et le positionnement multidimensionnel (multidimensional scaling – MDS).camara-spring-email-notification
Mon api de notification email en springbagging_boosting_stacking
Python Machine Learning en français vous enseigne les techniques d'Ensemble Learning : Bagging Boosting et Stacking, qui permettent de développer les modèles de machine learning les plus puissants au monde, comme l'algorithme de Random Forest.object-localization-tensorflow
Welcome to this 2 hour long guided project on creating and training an Object Localization model with TensorFlow. In this guided project, we are going to use TensorFlow's Keras API to create a convolutional neural network which will be trained to classify as well as localize emojis in images. Localization, in this context, means the position of the emojis in the images. This means that the network will have one input and two outputs. Think of this task as a simpler version of Object Detection. In Object Detection, we might have multiple objects in the input images, and an object detection model predicts the classes as well as bounding boxes for all of those objects. In Object Localization, we are working with the assumption that there is just one object in any given image, and our CNN model will classify and localize that object. Please note that you will need prior programming experience in Python. You will also need familiarity with TensorFlow. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like Gradient Descent but want to understand how to use use TensorFlow to solve computer vision tasks like Object Localization.Love Open Source and this site? Check out how you can help us