• Stars
    star
    16,893
  • Rank 1,636 (Top 0.04 %)
  • Language
    Perl
  • Created almost 13 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Stack trace visualizer

Flame Graphs visualize profiled code

Main Website: http://www.brendangregg.com/flamegraphs.html

Example (click to zoom):

Example

Click a box to zoom the Flame Graph to this stack frame only. To search and highlight all stack frames matching a regular expression, click the search button in the upper right corner or press Ctrl-F. By default, search is case sensitive, but this can be toggled by pressing Ctrl-I or by clicking the ic button in the upper right corner.

Other sites:

Flame graphs can be created in three steps:

  1. Capture stacks
  2. Fold stacks
  3. flamegraph.pl

1. Capture stacks

Stack samples can be captured using Linux perf_events, FreeBSD pmcstat (hwpmc), DTrace, SystemTap, and many other profilers. See the stackcollapse-* converters.

Linux perf_events

Using Linux perf_events (aka "perf") to capture 60 seconds of 99 Hertz stack samples, both user- and kernel-level stacks, all processes:

# perf record -F 99 -a -g -- sleep 60
# perf script > out.perf

Now only capturing PID 181:

# perf record -F 99 -p 181 -g -- sleep 60
# perf script > out.perf

DTrace

Using DTrace to capture 60 seconds of kernel stacks at 997 Hertz:

# dtrace -x stackframes=100 -n 'profile-997 /arg0/ { @[stack()] = count(); } tick-60s { exit(0); }' -o out.kern_stacks

Using DTrace to capture 60 seconds of user-level stacks for PID 12345 at 97 Hertz:

# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345 && arg1/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks

60 seconds of user-level stacks, including time spent in-kernel, for PID 12345 at 97 Hertz:

# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks

Switch ustack() for jstack() if the application has a ustack helper to include translated frames (eg, node.js frames; see: http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/). The rate for user-level stack collection is deliberately slower than kernel, which is especially important when using jstack() as it performs additional work to translate frames.

2. Fold stacks

Use the stackcollapse programs to fold stack samples into single lines. The programs provided are:

  • stackcollapse.pl: for DTrace stacks
  • stackcollapse-perf.pl: for Linux perf_events "perf script" output
  • stackcollapse-pmc.pl: for FreeBSD pmcstat -G stacks
  • stackcollapse-stap.pl: for SystemTap stacks
  • stackcollapse-instruments.pl: for XCode Instruments
  • stackcollapse-vtune.pl: for Intel VTune profiles
  • stackcollapse-ljp.awk: for Lightweight Java Profiler
  • stackcollapse-jstack.pl: for Java jstack(1) output
  • stackcollapse-gdb.pl: for gdb(1) stacks
  • stackcollapse-go.pl: for Golang pprof stacks
  • stackcollapse-vsprof.pl: for Microsoft Visual Studio profiles
  • stackcollapse-wcp.pl: for wallClockProfiler output

Usage example:

For perf_events:
$ ./stackcollapse-perf.pl out.perf > out.folded

For DTrace:
$ ./stackcollapse.pl out.kern_stacks > out.kern_folded

The output looks like this:

unix`_sys_sysenter_post_swapgs 1401
unix`_sys_sysenter_post_swapgs;genunix`close 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf 85
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_closef 26
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_setf 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_getstate 6
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_unfalloc 2
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`closef 48
[...]

3. flamegraph.pl

Use flamegraph.pl to render a SVG.

$ ./flamegraph.pl out.kern_folded > kernel.svg

An advantage of having the folded input file (and why this is separate to flamegraph.pl) is that you can use grep for functions of interest. Eg:

$ grep cpuid out.kern_folded | ./flamegraph.pl > cpuid.svg

Provided Examples

Linux perf_events

An example output from Linux "perf script" is included, gzip'd, as example-perf-stacks.txt.gz. The resulting flame graph is example-perf.svg:

Example

You can create this using:

$ gunzip -c example-perf-stacks.txt.gz | ./stackcollapse-perf.pl --all | ./flamegraph.pl --color=java --hash > example-perf.svg

This shows my typical workflow: I'll gzip profiles on the target, then copy them to my laptop for analysis. Since I have hundreds of profiles, I leave them gzip'd!

Since this profile included Java, I used the flamegraph.pl --color=java palette. I've also used stackcollapse-perf.pl --all, which includes all annotations that help flamegraph.pl use separate colors for kernel and user level code. The resulting flame graph uses: green == Java, yellow == C++, red == user-mode native, orange == kernel.

This profile was from an analysis of vert.x performance. The benchmark client, wrk, is also visible in the flame graph.

DTrace

An example output from DTrace is also included, example-dtrace-stacks.txt, and the resulting flame graph, example-dtrace.svg:

Example

You can generate this using:

$ ./stackcollapse.pl example-stacks.txt | ./flamegraph.pl > example.svg

This was from a particular performance investigation: the Flame Graph identified that CPU time was spent in the lofs module, and quantified that time.

Options

See the USAGE message (--help) for options:

USAGE: ./flamegraph.pl [options] infile > outfile.svg

--title TEXT     # change title text
--subtitle TEXT  # second level title (optional)
--width NUM      # width of image (default 1200)
--height NUM     # height of each frame (default 16)
--minwidth NUM   # omit smaller functions. In pixels or use "%" for 
                 # percentage of time (default 0.1 pixels)
--fonttype FONT  # font type (default "Verdana")
--fontsize NUM   # font size (default 12)
--countname TEXT # count type label (default "samples")
--nametype TEXT  # name type label (default "Function:")
--colors PALETTE # set color palette. choices are: hot (default), mem,
                 # io, wakeup, chain, java, js, perl, red, green, blue,
                 # aqua, yellow, purple, orange
--bgcolors COLOR # set background colors. gradient choices are yellow
                 # (default), blue, green, grey; flat colors use "#rrggbb"
--hash           # colors are keyed by function name hash
--cp             # use consistent palette (palette.map)
--reverse        # generate stack-reversed flame graph
--inverted       # icicle graph
--flamechart     # produce a flame chart (sort by time, do not merge stacks)
--negate         # switch differential hues (blue<->red)
--notes TEXT     # add notes comment in SVG (for debugging)
--help           # this message

eg,
./flamegraph.pl --title="Flame Graph: malloc()" trace.txt > graph.svg

As suggested in the example, flame graphs can process traces of any event, such as malloc()s, provided stack traces are gathered.

Consistent Palette

If you use the --cp option, it will use the $colors selection and randomly generate the palette like normal. Any future flamegraphs created using the --cp option will use the same palette map. Any new symbols from future flamegraphs will have their colors randomly generated using the $colors selection.

If you don't like the palette, just delete the palette.map file.

This allows your to change your colorscheme between flamegraphs to make the differences REALLY stand out.

Example:

Say we have 2 captures, one with a problem, and one when it was working (whatever "it" is):

cat working.folded | ./flamegraph.pl --cp > working.svg
# this generates a palette.map, as per the normal random generated look.

cat broken.folded | ./flamegraph.pl --cp --colors mem > broken.svg
# this svg will use the same palette.map for the same events, but a very
# different colorscheme for any new events.

Take a look at the demo directory for an example:

palette-example-working.svg
palette-example-broken.svg

More Repositories

1

perf-tools

Performance analysis tools based on Linux perf_events (aka perf) and ftrace
Shell
9,533
star
2

bpf-perf-tools-book

Official repository for the BPF Performance Tools book
Python
1,621
star
3

HeatMap

Heat map generation tools
Perl
305
star
4

pmc-cloud-tools

PMC (Performance Monitoring Counter) tools for the cloud
Shell
233
star
5

Chaosreader

An any-snarf program that processes application protocols (HTTP/FTP/...) from tcpdump or snoop files and stores session and file data
216
star
6

dtrace-cloud-tools

Some DTrace tools written for the SmartOS/SmartDataCenter cloud (illumos-based)
D
202
star
7

wss

Working Set Size tools
C
200
star
8

systemtap-lwtools

SystemTap Lightweight Tools
182
star
9

bpf-perf-workshop

C
179
star
10

msr-cloud-tools

MSR Cloud Tools
Shell
173
star
11

DTrace-book-scripts

Scripts from "DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD", by Brendan Gregg and Jim Mauro, Prentice Hall, 2011.
167
star
12

BPF-tools

Performance Tools using Linux eBPF
C
118
star
13

perf-labs

Performance analysis labs
C
89
star
14

DTrace-tools

DTrace tools for FreeBSD
DTrace
69
star
15

PerfModels

Performance Scalability Models
R
67
star
16

Misc

Misc
Shell
65
star
17

Dump2PNG

Visualize file data as a PNG
C
40
star
18

GuessingGame

Guessing game written in many programming languages
Batchfile
33
star
19

proc-profiler

Linux /proc/PID/stack profiler
Perl
32
star
20

bpf-typewriter

BPF noisy typewriter (bpftrace)
23
star
21

p1bench

Perturbation Benchmark
C
20
star
22

DTraceToolkit

A collection of useful, tested and documented DTrace scripts
16
star
23

FlameScope

coming soon
Perl
13
star
24

skid-testing

Processor PMC sample skid testing
C
7
star
25

wrmsrbench

WRMSR micro benchmark
C
7
star
26

Test

testing github
JavaScript
3
star
27

brendangregg.github.io

HTML
3
star