• Stars
    star
    279
  • Rank 147,967 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

⚛️ It is keras based implementation of siamese architecture using lstm encoders to compute text similarity

Text Similarity Using Siamese Deep Neural Network

Siamese neural network is a class of neural network architectures that contain two or more identical subnetworks. identical here means they have the same configuration with the same parameters and weights. Parameter updating is mirrored across both subnetworks.

It is a keras based implementation of deep siamese Bidirectional LSTM network to capture phrase/sentence similarity using word embeddings.

Below is the architecture description for the same.

rch_imag

Install dependencies

pip install -r requirements.txt

Usage

Training

from model import SiameseBiLSTM
from inputHandler import word_embed_meta_data, create_test_data
from config import siamese_config
import pandas as pd

############ Data Preperation ##########

df = pd.read_csv('sample_data.csv')

sentences1 = list(df['sentences1'])
sentences2 = list(df['sentences2'])
is_similar = list(df['is_similar'])
del df

######## Word Embedding ############

tokenizer, embedding_matrix = word_embed_meta_data(sentences1 + sentences2,  siamese_config['EMBEDDING_DIM'])

embedding_meta_data = {
	'tokenizer': tokenizer,
	'embedding_matrix': embedding_matrix
}

## creating sentence pairs
sentences_pair = [(x1, x2) for x1, x2 in zip(sentences1, sentences2)]
del sentences1
del sentences2

######## Training ########

class Configuration(object):
    """Dump stuff here"""

CONFIG = Configuration()

CONFIG.embedding_dim = siamese_config['EMBEDDING_DIM']
CONFIG.max_sequence_length = siamese_config['MAX_SEQUENCE_LENGTH']
CONFIG.number_lstm_units = siamese_config['NUMBER_LSTM']
CONFIG.rate_drop_lstm = siamese_config['RATE_DROP_LSTM']
CONFIG.number_dense_units = siamese_config['NUMBER_DENSE_UNITS']
CONFIG.activation_function = siamese_config['ACTIVATION_FUNCTION']
CONFIG.rate_drop_dense = siamese_config['RATE_DROP_DENSE']
CONFIG.validation_split_ratio = siamese_config['VALIDATION_SPLIT']

siamese = SiameseBiLSTM(CONFIG.embedding_dim , CONFIG.max_sequence_length, CONFIG.number_lstm_units , CONFIG.number_dense_units, CONFIG.rate_drop_lstm, CONFIG.rate_drop_dense, CONFIG.activation_function, CONFIG.validation_split_ratio)

best_model_path = siamese.train_model(sentences_pair, is_similar, embedding_meta_data, model_save_directory='./')

Testing

from operator import itemgetter
from keras.models import load_model

model = load_model(best_model_path)

test_sentence_pairs = [('What can make Physics easy to learn?','How can you make physics easy to learn?'),('How many times a day do a clocks hands overlap?','What does it mean that every time I look at the clock the numbers are the same?')]

test_data_x1, test_data_x2, leaks_test = create_test_data(tokenizer,test_sentence_pairs,  siamese_config['MAX_SEQUENCE_LENGTH'])

preds = list(model.predict([test_data_x1, test_data_x2, leaks_test], verbose=1).ravel())
results = [(x, y, z) for (x, y), z in zip(test_sentence_pairs, preds)]
results.sort(key=itemgetter(2), reverse=True)
print results

References:

  1. Siamese Recurrent Architectures for Learning Sentence Similarity (2016)
  2. Inspired from Tensorflow Implementation of https://github.com/dhwajraj/deep-siamese-text-similarity