• Stars
    star
    14
  • Rank 1,438,076 (Top 29 %)
  • Language
    Jupyter Notebook
  • Created over 7 years ago
  • Updated over 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Classification and Segmentation of the MNIST dataset given as a point set input. Classification: the program classifies hand written digits, given as a sample of 100 points in a 2 dimensional field. the architecture is based on a Stanford article of a PointNet which is especially efficient for 3D image classification. the PointNet classification accuracy is 92.86% Segmentation: this is an extension to the classification net which can later define segments within the pointset. the program receives an input of a handwritten digit, given as a sample of 200 points in a 2 dimensional field, where 100 of the points are a sample of the digit itself, and the rest of the points are "background" points which are not part of the digit. the program classifies each point into one of the 2 segments and returns if it is part of the digit or part of the background. the PointNet segmentation accuracy is 97.65%