• Stars
    star
    459
  • Rank 95,377 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created 11 months ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

MLGB is a library that includes many models of CTR Prediction & Recommender System by TensorFlow & PyTorch. MLGB是一个包含50+点击率预估和推荐系统深度模型的、通过TensorFlow和PyTorch撰写的库。

PyPI - Version Conda - Version PyPI - License PyPI - Python PyPI - Status PyPI - Wheel PyPI - Downloads PyPI - TensorFlow PyPI - PyTorch


MLGB means Machine Learning of the Great Boss, and is called 「妙计包」.
MLGB is a library that includes many models of CTR Prediction & Recommender System by TensorFlow & PyTorch.

Advantages

  • Easy! Use mlgb.get_model(model_name, **kwargs) to get a complex model.
  • Fast! Better performance through better code.
  • Enjoyable! 50+ ranking & matching models to use, 2 languages(TensorFlow & PyTorch) to deploy.

Supported Models

ID Model Name Paper Link Paper Team Paper Year
📂 Ranking-Model::Normal 👇
1 LR Predicting Clicks: Estimating the Click-Through Rate for New Ads Microsoft 2007
2 PLM/MLR Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction Alibaba 2017
3 MLP/DNN Neural Networks for Pattern Recognition Christopher M. Bishop(Microsoft, 1997-Present), Foreword by Geoffrey Hinton. 1995
4 DLRM Deep Learning Recommendation Model for Personalization and Recommendation Systems Facebook(Meta) 2019
5 MaskNet MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask Weibo(Sina) 2021
6 DCM/DeepCross Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features Microsoft 2016
7 DCN DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems, v1 Google(Alphabet) 2017, 2020
8 EDCN Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models Huawei 2021
9 FM Factorization Machines Steffen Rendle(Google, 2013-Present) 2010
10 FFM Field-aware Factorization Machines for CTR Prediction NTU 2016
11 HOFM Higher-Order Factorization Machines NTT 2016
12 FwFM Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising Junwei Pan(Yahoo), etc. 2018, 2020
13 FmFM FM^2: Field-matrixed Factorization Machines for Recommender Systems Yahoo 2021
14 FEFM FIELD-EMBEDDED FACTORIZATION MACHINES FOR CLICK-THROUGH RATE PREDICTION Harshit Pande(Adobe) 2020, 2021
15 AFM Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks ZJU&NUS(Jun Xiao(ZJU), Xiangnan He(NUS), etc.) 2017
16 LFM Learning Feature Interactions with Lorentzian Factorization Machine EBay 2019
17 IFM An Input-aware Factorization Machine for Sparse Prediction THU 2019
18 DIFM A Dual Input-aware Factorization Machine for CTR Prediction THU 2020
19 FNN Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction UCL(Weinan Zhang(UCL, SJTU), etc.) 2016
20 PNN Product-based Neural Networks for User Response SJTU&UCL(Yanru Qu(SJTU), Weinan Zhang(SJTU, UCL), etc.) 2016
21 PIN Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data Huawei(Yanru Qu(Huawei(2017.3-2018.3), SJTU), Weinan Zhang(SJTU, UCL), etc.) 2018
22 ONN/NFFM Operation-aware Neural Networks for User Response Prediction NJU 2019
23 AFN Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions SJTU 2019, 2020
24 NFM Neural Factorization Machines for Sparse Predictive Analytics NUS(Xiangnan He(NUS)) 2017
25 WDL Wide & Deep Learning for Recommender Systems Google(Alphabet) 2016
26 DeepFM DeepFM: A Factorization-Machine based Neural Network for CTR Prediction Huawei 2017
27 DeepFEFM FIELD-EMBEDDED FACTORIZATION MACHINES FOR CLICK-THROUGH RATE PREDICTION Harshit Pande(Adobe) 2020, 2021
28 FLEN FLEN: Leveraging Field for Scalable CTR Prediction Meitu 2019, 2020
29 CCPM A Convolutional Click Prediction Model CASIA 2015
30 FGCNN Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction Huawei 2019
31 XDeepFM xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems Microsoft(Jianxun Lian(USTC, Microsoft(2018.7-Present)), etc.) 2018
32 FiBiNet FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction Weibo(Sina) 2019
33 AutoInt AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks PKU 2018, 2019
📂 Ranking-Model::Sequential 👇
34 GRU4Rec Session-based Recommendations with Recurrent Neural Networks Telefonica 2015, 2016
35 Caser Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding SFU 2018
36 SASRec Self-Attentive Sequential Recommendation UCSD 2018
37 BERT4Rec BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer Alibaba 2019
38 BST Behavior Sequence Transformer for E-commerce Recommendation in Alibaba Alibaba 2019
39 DIN Deep Interest Network for Click-Through Rate Prediction, v1 Alibaba 2017, 2018
40 DIEN Deep Interest Evolution Network for Click-Through Rate Prediction Alibaba 2018
41 DSIN Deep Session Interest Network for Click-Through Rate Prediction Alibaba 2019
📂 Ranking-Model::Multitask 👇
42 SharedBottom An Overview of Multi-Task Learning in Deep Neural Networks Sebastian Ruder(InsightCentre) 2017
43 ESMM Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate Alibaba 2018
44 MMoE Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts Google(Alphabet) 2018
45 PLE Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations Tencent 2020
46 PEPNet PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information Kuaishou 2023
📂 Matching-Model 👇
47 NCF Neural Collaborative Filtering NUS(Xiangnan He(NUS), etc) 2017
48 MatchFM Factorization Machines Steffen Rendle(Google, 2013-Present) 2010
49 DSSM Learning deep structured semantic models for web search using clickthrough data Microsoft 2013
50 EBR Embedding-based Retrieval in Facebook Search Facebook(Meta) 2020
51 YoutubeDNN Deep Neural Networks for YouTube Recommendations Google(Alphabet) 2016
52 MIND Multi-Interest Network with Dynamic Routing for Recommendation at Tmall Alibaba 2019

Installation

# PYPI
pip install --upgrade mlgb

# Conda
conda install conda-forge::mlgb

Getting Started

import mlgb

# parameters of get_model:
help(mlgb.get_model)

"""
get_model(feature_names, model_name='LR', task='binary', aim='ranking', lang='TensorFlow', device=None, seed=None, **kwargs)
    :param feature_names: tuple(tuple(dict)), must. Embedding need vocabulary size and custom embed_dim of features.
    :param model_name: str, default 'LR'. Union[`mlgb.ranking_models`, `mlgb.matching_models`, `mlgb.mtl_models`]
    :param task: str, default 'binary'. Union['binary', 'regression', 'multiclass:{int}']
    :param aim: str, default 'ranking'. Union['ranking', 'matching', 'mtl']
    :param lang: str, default 'TensorFlow'. Union['TensorFlow', 'PyTorch', 'tf', 'torch']
    :param device: Optional[str, int], default None. Only for PyTorch.
    :param seed: Optional[int], default None.
    :param **kwargs: more model parameters by `mlgb.get_model_help(model_name)`.
"""

# parameters of model:
mlgb.get_model_help(model_name='LR', lang='torch')

"""
class LR(torch.nn.modules.module.Module)
 |  LR(feature_names, task='binary', device='cpu', inputs_if_multivalued=False, inputs_if_sequential=False, inputs_if_embed_dense=False, embed_dim=32, embed_2d_dim=None, embed_initializer=None, pool_mv_mode='Pooling:average', pool_mv_axis=2, pool_mv_initializer=None, pool_seq_mode='Pooling:average', pool_seq_axis=1, pool_seq_initializer=None, model_l1=0.0, model_l2=0.0, linear_if_bias=True)
 |  
 |  Methods defined here:
 |  
 |  __init__(self, feature_names, task='binary', device='cpu', inputs_if_multivalued=False, inputs_if_sequential=False, inputs_if_embed_dense=False, embed_dim=32, embed_2d_dim=None, embed_initializer=None, pool_mv_mode='Pooling:average', pool_mv_axis=2, pool_mv_initializer=None, pool_seq_mode='Pooling:average', pool_seq_axis=1, pool_seq_initializer=None, model_l1=0.0, model_l2=0.0, linear_if_bias=True)
 |      Model Name: LR(LinearOrLogisticRegression)
 |      Paper Team: Microsoft
 |      Paper Year: 2007
 |      Paper Name: <Predicting Clicks: Estimating the Click-Through Rate for New Ads>
 |      Paper Link: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/predictingclicks.pdf
 |      
 |      Task Inputs Parameters:
 |          :param feature_names: tuple(tuple(dict)), must. Embedding need vocabulary size and custom embed_dim of features.
 |          :param task: str, default 'binary'. Union['binary', 'regression']
 |          :param device: str, default 'cpu'.
 |          :param inputs_if_multivalued: bool, default False.
 |          :param inputs_if_sequential: bool, default False.
 |          :param inputs_if_embed_dense: bool, default False.
 |          :param embed_dim: int, default 32.
 |          :param embed_2d_dim: Optional[int], default None. When None, each field has own embed_dim by feature_names.
 |          :param embed_initializer: Optional[str], default None. When None, activation judge first, xavier_normal end.
 |          :param pool_mv_mode: str, default 'Pooling:average'. Pooling mode of multivalued inputs. Union[
 |                              'Attention', 'Weighted', 'Pooling:max', 'Pooling:average', 'Pooling:sum']
 |          :param pool_mv_axis: int, default 2. Pooling axis of multivalued inputs.
 |          :param pool_mv_initializer: Optional[str], default None. When None, activation judge first,
 |                              xavier_normal end. When pool_mv_mode is in ('Weighted', 'Attention'), it works.
 |          :param pool_seq_mode: str, default 'Pooling:average'. Pooling mode of sequential inputs. Union[
 |                              'Attention', 'Weighted', 'Pooling:max', 'Pooling:average', 'Pooling:sum']
 |          :param pool_seq_axis: int, default 1. Pooling axis of sequential inputs.
 |          :param pool_seq_initializer: Optional[str], default None. When None, activation judge first,
 |                              xavier_normal end. When pool_seq_mode is in ('Weighted', 'Attention'), it works.
 |      
 |      Task Effective Parameters:
 |          :param model_l1: float, default 0.0.
 |          :param model_l2: float, default 0.0.
 |      
 |      Task Model Parameters:
 |          :param linear_if_bias: bool, default True.
"""

Code Examples

Code Examples
TensorFlow
PyTorch

Citation

If you use this for research, please cite it using the following BibTeX entry. Thanks.

@misc{uliontse2020mlgb,
  author = {UlionTse},
  title = {MLGB is a library that includes many models of CTR Prediction & Recommender System by TensorFlow & PyTorch},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub Repository},
  howpublished = {\url{https://github.com/UlionTse/mlgb}},
}