• Stars
    star
    296
  • Rank 140,464 (Top 3 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

simple tutorials and examples of wordcloud-python

词云可视化:四行Python代码轻松上手到精通

本课概要

词云是文本大数据可视化的重要方式,可以将大段文本中的关键语句和词汇高亮展示。

从四行代码开始,一步步教你做出高大上的词云图片,可视化生动直观展示出枯燥文字背后的核心概念。进一步实现修改字体、字号、背景颜色、词云形状、勾勒边框、颜色渐变、分类填色、情感分析等高级玩法。

学完本课之后,你可以将四大名著、古典诗词、时事新闻、法律法规、政府报告、小说诗歌等大段文本做成高大上的可视化词云,还可以将你的微信好友个性签名导出,看看你微信好友的“画风”是怎样的。

三国演艺词云

从远古山洞壁画到微信表情包,人类千百年来始终都是懒惰的视觉动物。连篇累牍的大段文本会让人感到枯燥乏味。在这个“颜值即正义”的时代,大数据更需要“颜值”才能展现数据挖掘的魅力。

对于编程小白,学会此技可以玩转文本,入门中文分词、情感分析。对于编程高手,通过本课可以进一步熟悉Python的开源社区、计算生态、面向对象,自定义自己专属风格的词云。

词云的应用场景

  • 会议记录
  • 海报制作
  • PPT制作
  • 生日表白
  • 数据挖掘
  • 情感分析
  • 用户画像
  • 微信聊天记录分析
  • 微博情感分析
  • Bilibili弹幕情感分析
  • 年终总结

关于本课程

作者:同济大学 子豪兄 2019-5-23

源代码及相关素材Github库:zihaowordcloud

Bilibili视频教程:同济子豪兄

知乎专栏:人工智能小技巧

简书专栏:人工智能小技巧

粉丝答疑交流QQ群:953712961

微信赞赏码

子豪兄的赞赏码

不需要写代码——词云图片制作微信小程序

微信小程序-快速词云制作

如果你不想写代码,可以直接忽略掉以下所有内容。这个微信小程序可以实现以下所有常用功能。

安装本课程所需的Python第三方模块

一行命令安装(推荐,适用于99.999%的情况)

打开命令行,输入下面这行命令,回车执行即可。

pip install numpy matplotlib pillow wordcloud imageio jieba snownlp itchat -i https://pypi.tuna.tsinghua.edu.cn/simple

如果安装过程中报错(0.001%会发生)

如果报错:Microsoft Visual C++ 14.0 is required.

解决方法:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud 页面下载所需的wordcloud模块的.whl文件,再用pip安装下载的文件。

比如,对于64位windows操作系统,python版本为3.6的电脑,就应该下载

wordcloud-1.4.1-cp36-cp36m-win_amd64.whl这个文件

下载后打开命令行,使用cd命令切换到该文件的路径,执行pip install wordcloud-1.4.1-cp36-cp36m-win_amd64.whl命令,即可安装成功。

四行Python代码上手词云制作

1号词云:《葛底斯堡演说》黑色背景词云(4行代码上手)

import wordcloud

w = wordcloud.WordCloud()

w.generate('and that government of the people, by the people, for the people, shall not perish from the earth.')

w.to_file('output1.png')

运行完成之后,在代码所在的文件夹,就会出现output.png图片文件。可以看出,wordcloud自动将and that by the not from等废话词组过滤掉,并且把出现次数最多的people大号显示。

1号词云:葛底斯堡演说黑色背景词云

子豪兄带你逐行读代码

# 1号词云:葛底斯堡演说黑色背景词云
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作第三方库wordcloud
import wordcloud

# 创建词云对象,赋值给w,现在w就表示了一个词云对象
w = wordcloud.WordCloud()

# 调用词云对象的generate方法,将文本传入
w.generate('and that government of the people, by the people, for the people, shall not perish from the earth.')

# 将生成的词云保存为output1.png图片文件,保存出到当前文件夹中
w.to_file('output1.png')

wordcloud库为每一个词云生成一个WordCloud对象(注意,此处的W和C是大写)

也就是说,wordcloud.WordCloud()代表一个词云对象,我们将它赋值给w

现在,这个w就是词云对象啦!我们可以调用这个对象。

我们可以在WordCloud()括号里填入各种参数,控制词云的字体、字号、字的颜色、背景颜色等等。

wordcloud库会非常智能地按空格进行分词及词频统计,出现次数多的词就大。

美化词云

2号词云:面朝大海,春暖花开(配置词云参数)

增加宽、高、字体、背景颜色等参数

# 2号词云:面朝大海,春暖花开
# B站专栏:同济子豪兄 2019-5-23

import wordcloud

# 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
w = wordcloud.WordCloud(width=1000,height=700,background_color='white',font_path='msyh.ttc')

# 调用词云对象的generate方法,将文本传入
w.generate('从明天起,做一个幸福的人。喂马、劈柴,周游世界。从明天起,关心粮食和蔬菜。我有一所房子,面朝大海,春暖花开')

# 将生成的词云保存为output2-poem.png图片文件,保存到当前文件夹中
w.to_file('output2-poem.png')

2号词云:面朝大海,春暖花开

如果参数过多,第二行写成长长的一行不好看,可以写成多行,让代码更工整

# 2号词云:面朝大海,春暖花开
# B站专栏:同济子豪兄 2019-5-23

import wordcloud

# 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc')

w.generate('从明天起,做一个幸福的人。喂马、劈柴,周游世界。从明天起,关心粮食和蔬菜。我有一所房子,面朝大海,春暖花开')

w.to_file('output2-poem.png')

常用参数

  • width 词云图片宽度,默认400像素

  • height 词云图片高度 默认200像素

  • background_color 词云图片的背景颜色,默认为黑色

    background_color='white'

  • font_step 字号增大的步进间隔 默认1号

    font_path 指定字体路径 默认None,对于中文可用font_path='msyh.ttc'

  • mini_font_size 最小字号 默认4号

  • max_font_size 最大字号 根据高度自动调节

  • max_words 最大词数 默认200

  • stop_words 不显示的单词 stop_words={"python","java"}

  • Scale 默认值1。值越大,图像密度越大越清晰

  • prefer_horizontal:默认值0.90,浮点数类型。表示在水平如果不合适,就旋转为垂直方向,水平放置的词数占0.9?

  • relative_scaling:默认值0.5,浮点型。设定按词频倒序排列,上一个词相对下一位词的大小倍数。有如下取值:“0”表示大小标准只参考频率排名,“1”如果词频是2倍,大小也是2倍

  • mask 指定词云形状图片,默认为矩形

    通过以下代码读入外部词云形状图片(需要先pip install imageio安装imageio)

import imageio
mk = imageio.imread("picture.png")
w = wordcloud.WordCloud(mask=mk)

也就是说,我们可以这样来构建词云对象w,其中的参数均为常用参数的默认值,供我们自定义:

w = wordcloud.WordCloud(      
    width=400,
    height=200,
    background_color='black',
    font_path=None, 
    font_step=1,
    min_font_size=4,
    max_font_size=None,
    max_words=200,
    stopwords={},
    scale=1,
    prefer_horizontal=0.9,
    relative_scaling=0.5,
    mask=None) 

从外部文件读入文本

3号词云:乡村振兴战略中央文件(句子云)

# 3号词云:乡村振兴战略中央文件
# B站专栏:同济子豪兄 2019-5-23

import wordcloud

# 从外部.txt文件中读取大段文本,存入变量txt中
f = open('关于实施乡村振兴战略的意见.txt',encoding='utf-8')
txt = f.read()

# 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc')

# 将txt变量传入w的generate()方法,给词云输入文字
w.generate(txt)

# 将词云图片导出到当前文件夹
w.to_file('output3-sentence.png')

3号词云:乡村振兴战略中央文件

中文分词

中文分词第三方模块jieba

中文分词-小试牛刀

安装中文分词库jieba:在命令行中输入pip install jieba

打开python的交互式shell界面,也就是有三个大于号>>>的这个界面,依次输入以下命令。

>>> import jieba
>>> textlist = jieba.lcut('动力学和电磁学')
>>> textlist
['动力学', '和', '电磁学']
>>> string = " ".join(textlist)
>>> string
'动力学 和 电磁学'

以上代码将一句完整的中文字符串转换成了以空格分隔的词组成的字符串,而后者是绘制词云时generate()方法要求传入的参数。

中文分词库jieba的常用方法

精确模式(最常用,只会这个就行):每个字只用一遍,不存在冗余词汇。jieba.lcut('动力学和电磁学')

全模式:把每个字可能形成的词汇都提取出来,存在冗余。jieba.lcut('动力学和电磁学',cut_all=True)

搜索引擎模式:将全模式分词的结果从短到长排列好。jieba.lcut_for_search('动力学和电磁学')

以下命令演示了三种分词模式及结果,精确模式是最常用的。

>>> import jieba
>>> textlist1 = jieba.lcut('动力学和电磁学')
>>> textlist1
['动力学', '和', '电磁学']
>>> textlist2 = jieba.lcut('动力学和电磁学',cut_all=True)
>>> textlist2
['动力', '动力学', '力学', '和', '电磁', '电磁学', '磁学']
>>> textlist3 = jieba.lcut_for_search('动力学和电磁学')
>>> textlist3
['动力', '力学', '动力学', '和', '电磁', '磁学', '电磁学']

一键执行的详细脚本文件详见github代码库-zihaowordcloud中的test1-jieba.py文件。

4号词云:同济大学介绍词云(中文分词)

# 4号词云:同济大学介绍词云
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud
# 构建并配置词云对象w
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc')

# 调用jieba的lcut()方法对原始文本进行中文分词,得到string
txt = '同济大学(Tongji University),简称“同济”,是中华人民共和国教育部直属,由教育部、国家海洋局和上海市共建的全国重点大学,历史悠久、声誉卓著,是国家“双一流”、“211工程”、“985工程”重点建设高校,也是收生标准最严格的中国大学之一'
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)

# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 将词云图片导出到当前文件夹
w.to_file('output4-tongji.png')

4号词云:同济大学介绍词云

5号词云:乡村振兴战略中央文件(词云)

# 5号词云:乡村振兴战略中央文件(词云)
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud

# 构建并配置词云对象w
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc')

# 对来自外部文件的文本进行中文分词,得到string
f = open('关于实施乡村振兴战略的意见.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)

# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 将词云图片导出到当前文件夹
w.to_file('output5-village.png')

5号词云:乡村振兴战略中央文件(词云)

高级词云:绘制指定形状的词云

通过以下代码读入外部词云形状图片(需要先pip install imageio安装imageio)

import imageio
mk = imageio.imread("picture.png")
w = wordcloud.WordCloud(mask=mk)

6号词云:乡村振兴战略中央文件(五角星形状)

# 6号词云:乡村振兴战略中央文件(五角星形状)
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud

# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("wujiaoxing.png")
w = wordcloud.WordCloud(mask=mk)

# 构建并配置词云对象w,注意要加scale参数,提高清晰度
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc',
                        mask=mk,
                        scale=15)

# 对来自外部文件的文本进行中文分词,得到string
f = open('关于实施乡村振兴战略的意见.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)

# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 将词云图片导出到当前文件夹
w.to_file('output6-village.png')

6号词云:乡村振兴战略中央文件(五角星)

7号词云:新时代中国特色社会主义(中国地图形状)

# 7号词云:新时代中国特色社会主义(中国地图形状)
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud

# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("chinamap.png")
w = wordcloud.WordCloud(mask=mk)

# 构建并配置词云对象w,注意要加scale参数,提高清晰度
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc',
                        mask=mk,
                        scale=15)

# 对来自外部文件的文本进行中文分词,得到string
f = open('新时代中国特色社会主义.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)

# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 将词云图片导出到当前文件夹
w.to_file('output7-chinamap.png')

加scale参数为15的效果

7号词云:新时代中国特色社会主义(中国地图形状)

不加scale参数的效果,稍显模糊

中国地图词云

8号词云:《三国演义》词云(stopwords参数去除词)

# 8号词云:《三国演义》词云(stopwords参数去除“曹操”和“孔明”两个词)
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud

# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("chinamap.png")

# 构建并配置词云对象w,注意要加stopwords集合参数,将不想展示在词云中的词放在stopwords集合里,这里去掉“曹操”和“孔明”两个词
w = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc',
                        mask=mk,
                        scale=15,
                        stopwords={'曹操','孔明'})

# 对来自外部文件的文本进行中文分词,得到string
f = open('threekingdoms.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)

# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 将词云图片导出到当前文件夹
w.to_file('output8-threekingdoms.png')

三国演艺词云

9号词云:《哈姆雷特》(勾勒轮廓线)

# 9号词云:哈姆雷特(勾勒轮廓线)
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud
import wordcloud

# 将外部文件包含的文本保存在string变量中
string = open('hamlet.txt').read()

# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("alice.png")

# 构建词云对象w,注意增加参数contour_width和contour_color设置轮廓宽度和颜色
w = wordcloud.WordCloud(background_color="white",
                        mask=mk,
                        contour_width=1,
                        contour_color='steelblue')

# # 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 将词云图片导出到当前文件夹
w.to_file('output9-contour.png')

8号词云:哈姆雷特(勾勒轮廓线)

10号词云:《爱丽丝漫游仙境》词云(按模板填色)

# 10号词云:《爱丽丝漫游仙境》词云(按模板填色)
# B站专栏:同济子豪兄 2019-5-23

# 导入绘图库matplotlib和词云制作库wordcloud
import matplotlib.pyplot as plt
from wordcloud import WordCloud,ImageColorGenerator

# 将外部文件包含的文本保存在text变量中
text = open('alice.txt').read()

# 导入imageio库中的imread函数,并用这个函数读取本地图片queen2.jfif,作为词云形状图片
import imageio
mk = imageio.imread("alice_color.png")

# 构建词云对象w
wc = WordCloud(background_color="white",
               mask=mk,)
# 将text字符串变量传入w的generate()方法,给词云输入文字
wc.generate(text)

# 调用wordcloud库中的ImageColorGenerator()函数,提取模板图片各部分的颜色
image_colors = ImageColorGenerator(mk)

# 显示原生词云图、按模板图片颜色的词云图和模板图片,按左、中、右显示
fig, axes = plt.subplots(1, 3)
# 最左边的图片显示原生词云图
axes[0].imshow(wc)
# 中间的图片显示按模板图片颜色生成的词云图,采用双线性插值的方法显示颜色
axes[1].imshow(wc.recolor(color_func=image_colors), interpolation="bilinear")
# 右边的图片显示模板图片
axes[2].imshow(mk, cmap=plt.cm.gray)
for ax in axes:
    ax.set_axis_off()
plt.show()

# 给词云对象按模板图片的颜色重新上色
wc_color = wc.recolor(color_func=image_colors)
# 将词云图片导出到当前文件夹
wc_color.to_file('output10-alice.png')

10号词云:《爱丽丝漫游仙境》词云(勾勒轮廓线)

image.png

加模板图片颜色的词云

进阶词云:尽享数据驱动与开源社区

11号词云:绘制你的微信好友个性签名词云

# 11号词云:绘制你的微信好友个性签名词云
# B站专栏:同济子豪兄 2019-05-23

# 导入微信库ichat,中文分词库jieba
import itchat
import jieba

# 先登录微信,跳出登陆二维码
itchat.login()
tList = []
# 获取好友列表
friends = itchat.get_friends(update=True)

# 构建所有好友个性签名组成的大列表tList
for i in friends:
    # 获取个性签名
    signature = i["Signature"]
    if 'emoji' in signature:
        pass
    else:
        tList.append(signature)
text = " ".join(tList)

# 对个性签名进行中文分词
wordlist_jieba = jieba.lcut(text, cut_all=True)
wl_space_split = " ".join(wordlist_jieba)

# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("chinamap.png")

# 导入词云制作库wordcloud
import wordcloud

# 构建并配置词云对象w,注意要加scale参数,提高清晰度
my_wordcloud = wordcloud.WordCloud(background_color='white',
                                   width=1000,
                                   height=700,
                                   font_path='msyh.ttc',
                                   max_words=2000,
                                   mask=mk,
                                   scale=20)
my_wordcloud.generate(wl_space_split)

nickname = friends[0]['NickName']
filename = "output11-{}的微信好友个性签名词云图.png".format(nickname)
my_wordcloud.to_file(filename)

# 显示词云图片
import matplotlib.pyplot as plt
plt.imshow(my_wordcloud)
plt.axis("off")
plt.show()
print('程序结束')

微信好友个性签名词云

文字情感分析与文本挖掘

Python中文语言处理第三方库snownlp小试牛刀

安装中文文本分析库snownlp:在命令行中输入pip install snownlp

打开python的交互式shell界面,也就是有三个大于号>>>的这个界面,依次输入以下命令。

>>> import snownlp
>>> word = snownlp.SnowNLP("中华民族伟大复兴")
>>> feeling = word.sentiments
>>> feeling
0.9935086411278989
>>> word = snownlp.SnowNLP("快递慢到死,客服态度不好,退款!")
>>> feeling = word.sentiments
>>> feeling
0.00012171645785852281

snownlp的语料库是淘宝等电商网站的评论,所以对购物类的文本情感分析准确度很高。

一键执行的详细脚本文件详见github代码库-zihaowordcloud中的test2-snownlp.py文件。

12号词云:《三体Ⅱ黑暗森林》情感分析词云

# 12号词云:《三体Ⅱ黑暗森林》情感分析词云
# B站专栏:同济子豪兄 2019-5-23

# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud

# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("chinamap.png")

# 构建并配置两个词云对象w1和w2,分别存放积极词和消极词
w1 = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc',
                        mask=mk,
                        scale=15)
w2 = wordcloud.WordCloud(width=1000,
                        height=700,
                        background_color='white',
                        font_path='msyh.ttc',
                        mask=mk,
                        scale=15)

# 对来自外部文件的文本进行中文分词,得到积极词汇和消极词汇的两个列表
f = open('三体黑暗森林.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
positivelist = []
negativelist = []

# 下面对文本中的每个词进行情感分析,情感>0.96判为积极词,情感<0.06判为消极词
print('开始进行情感分析,请稍等,三国演义全文那么长的文本需要三分钟左右')
# 导入自然语言处理第三方库snownlp
import snownlp
for each in txtlist:
    each_word = snownlp.SnowNLP(each)
    feeling = each_word.sentiments
    if feeling > 0.96:
        positivelist.append(each)
    elif feeling < 0.06:
        negativelist.append(each)
    else:
        pass
# 将积极和消极的两个列表各自合并成积极字符串和消极字符串,字符串中的词用空格分隔
positive_string = " ".join(positivelist)
negative_string = " ".join(negativelist)


# 将string变量传入w的generate()方法,给词云输入文字
w1.generate(positive_string)
w2.generate(negative_string)

# 将积极、消极的两个词云图片导出到当前文件夹
w1.to_file('output12-positive.png')
w2.to_file('output12-negative.png')
print('词云生成完成')

《三体Ⅱ黑暗森林 积极词汇词云和消极词汇词云》

13号词云:《三国演义》人物阵营分色词云

# 13号词云:三国人物阵营分色词云
# B站专栏:同济子豪兄 2019-5-23

# 导入wordcloud库,并定义两个函数
from wordcloud import (WordCloud, get_single_color_func)

class SimpleGroupedColorFunc(object):
    """Create a color function object which assigns EXACT colors
       to certain words based on the color to words mapping

       Parameters
       ----------
       color_to_words : dict(str -> list(str))
         A dictionary that maps a color to the list of words.

       default_color : str
         Color that will be assigned to a word that's not a member
         of any value from color_to_words.
    """

    def __init__(self, color_to_words, default_color):
        self.word_to_color = {word: color
                              for (color, words) in color_to_words.items()
                              for word in words}

        self.default_color = default_color

    def __call__(self, word, **kwargs):
        return self.word_to_color.get(word, self.default_color)


class GroupedColorFunc(object):
    """Create a color function object which assigns DIFFERENT SHADES of
       specified colors to certain words based on the color to words mapping.

       Uses wordcloud.get_single_color_func

       Parameters
       ----------
       color_to_words : dict(str -> list(str))
         A dictionary that maps a color to the list of words.

       default_color : str
         Color that will be assigned to a word that's not a member
         of any value from color_to_words.
    """

    def __init__(self, color_to_words, default_color):
        self.color_func_to_words = [
            (get_single_color_func(color), set(words))
            for (color, words) in color_to_words.items()]

        self.default_color_func = get_single_color_func(default_color)

    def get_color_func(self, word):
        """Returns a single_color_func associated with the word"""
        try:
            color_func = next(
                color_func for (color_func, words) in self.color_func_to_words
                if word in words)
        except StopIteration:
            color_func = self.default_color_func

        return color_func

    def __call__(self, word, **kwargs):
        return self.get_color_func(word)(word, **kwargs)
    
# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("chinamap.png")

w = WordCloud(width=1000,
              height=700,
              background_color='white',
              font_path='msyh.ttc',
              mask=mk,
              scale=15,
              max_font_size=60,
              max_words=20000,
              font_step=1)

import jieba
# 对来自外部文件的文本进行中文分词,得到string
f = open('三国演义.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)

# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)

# 创建字典,按人物所在的不同阵营安排不同颜色,绿色是蜀国,橙色是魏国,紫色是东吴,粉色是诸侯群雄
color_to_words = {
    'green': ['刘备','刘玄德','孔明','诸葛孔明', '玄德', '关公', '玄德曰','孔明曰',
              '张飞', '赵云','后主', '黄忠', '马超', '姜维', '魏延', '孟获',
              '关兴','诸葛亮','云长','孟达','庞统','廖化','马岱'],
    'red': ['曹操', '司马懿', '夏侯', '荀彧', '郭嘉','邓艾','许褚',
            '徐晃','许诸','曹仁','司马昭','庞德','于禁','夏侯渊','曹真','钟会'],
    'purple':['孙权','周瑜','东吴','孙策','吕蒙','陆逊','鲁肃','黄盖','太史慈'],
    'pink':['董卓','袁术','袁绍','吕布','刘璋','刘表','貂蝉']
}

# 其它词语的颜色
default_color = 'gray'

# 构建新的颜色规则
grouped_color_func = GroupedColorFunc(color_to_words, default_color)

# 按照新的颜色规则重新绘制词云颜色
w.recolor(color_func=grouped_color_func)

# 将词云图片导出到当前文件夹
w.to_file('output13-threekingdoms.png')

13号词云:《三国演义》人物阵营分色词云

课后闲话

wordcloud库

wordcloud的Github主页

词云绘制的原理

python123:你不知道的词云

词云制作微信小程序

微信小程序-快速词云制作

微信赞赏码

子豪兄的赞赏码

参考资料与扩展阅读

翻译:WorldCloud()官方使用说明 & matplotlib.pyplot.imshow()官方使用说明

Python语言程序设计MOOC 北京理工大学 嵩天

python123:你不知道的词云

文本素材来源

More Repositories

1

Train_Custom_Dataset

标注自己的数据集,训练、评估、测试、部署自己的人工智能算法
Jupyter Notebook
3,039
star
2

zihao_course

同济子豪兄的公开课
1,329
star
3

ZihaoTutorialOfRaspberryPi

子豪兄的零基础树莓派教程,代码存放地及更新勘误
1,247
star
4

zihaopython

follow me and learn python easily
Jupyter Notebook
906
star
5

Awesome

Github Trending榜高赞与趣味项目速览。主理人:同济子豪兄
365
star
6

MMSegmentation_Tutorials

Jupyter notebook tutorials for MMSegmentation
Jupyter Notebook
357
star
7

Zihao-Blog

Blog of programming
336
star
8

Label2Everything

常见计算机视觉标注格式相互转换
Jupyter Notebook
304
star
9

MMPose_Tutorials

Jupyter notebook tutorials for mmpose
Jupyter Notebook
278
star
10

raspberrypi-slam-ros-car

基于ROS机器人操作系统的树莓派智能小车,通过激光雷达、摄像头、IMU感知环境并构建地图,可实现多点自动导航、循迹、避障、跟随、hector算法构建slam地图、karto算法构建slam地图、opencv图像处理等功能。可通过安卓手机app进行地图构建与多点导航。
269
star
11

zihaoopencv

zihao's tutorial of opencv-python
Python
246
star
12

TommyZihao

Self Introduction about TommyZihao
218
star
13

ChatMarx

大学思政问答AI:近代史、思修、毛概、马原
211
star
14

MMGeneration_Tutorials

Jupyter notebook tutorials for mmgeneration
Jupyter Notebook
184
star
15

zihaopytorch

simple tutorial of pytorch
Jupyter Notebook
124
star
16

EasyHanzi

“直书”—基于华为HMS Core ML Kit的人工智能趣学汉字小程序。 搭载拍照识别、语音识别、AI翻译、语音生成等人工智能黑科技,外国人也可轻松上手,即查即用,一站式掌握汉字音、形、写、义。
JavaScript
107
star
17

zihao_AIGC

同济子豪兄的AIGC作品
105
star
18

MMTracking_Tutorials

Jupyter notebook tutorials for MMTracking
Jupyter Notebook
92
star
19

EasyFarming

农民伯伯只需要给自己的庄稼叶子拍张照片,人工智能就能识别出农作物的病虫害种类,给出精准的防治建议,并构建大范围农作物病虫害数据采集与预防预警系统,精准预防治理农作物病虫害。 助力精准扶贫、乡村振兴、智慧农业的同济智慧:将论文写在祖国大地上,写入田间地头里。
82
star
20

folium_tutorials

maps demo for folium_tutorials
HTML
77
star
21

EasyLung

从X光胸片医疗影像中AI智能识别肺炎及病原体种类的辅助诊断平台,包含网页、微信小程序、APP。
75
star
22

zihaomachinelearning

some simple tutorials of machine learning algorithms
Jupyter Notebook
61
star
23

PointWise_Body

气贯AI:中医人工智能图像识别
44
star
24

MagPi_Chinese

Chinese Translation of Raspberry Pi official Magazine MagPi 树莓派官方杂志MagPi的中文翻译
44
star
25

MMOCR_tutorials

Jupyter notebook tutorials for MMOCR
Jupyter Notebook
38
star
26

aidlux_tutorial

AidLux手机部署人工智能算法
Jupyter Notebook
33
star
27

MMDeploy_Tutorials

Jupyter notebook tutorials for MMDeploy
Jupyter Notebook
33
star
28

linux-funny-command

40个超有趣的Linux命令行彩蛋和游戏。
Shell
32
star
29

LLM_Dormitory

Jupyter Notebook
31
star
30

zihaokeras

子豪兄的keras视频教程
28
star
31

MMDetection_Tutorials

Jupyter notebook tutorials for MMDetection
Jupyter Notebook
25
star
32

MMClassification_Tutorials

Jupyter notebook tutorials for MMClassification
Jupyter Notebook
21
star
33

MMagic_Tutorials

Jupyter notebook tutorials for MMagic
Jupyter Notebook
17
star
34

MATLAB_AR_Tutorials

MATLAB Live Editor tutorials for Augmented Reality(AR)
17
star
35

StoryBook_Bedrock

基于Amazon Bedrock的多模态AIGC童话绘本
16
star
36

MATLAB_RL

Tutorials for MATLAB Reinforcement Learning
Jupyter Notebook
16
star
37

easy-railway

钢轨伤损人工智能图像识别APP—小轨当家
15
star
38

MMPretrain_Tutorials

Jupyter notebook tutorials for MMPretrain
Jupyter Notebook
14
star
39

CyberDog2_Tutorials

小米CyberDog2仿生四足机器人教程,同济子豪兄主讲
13
star
40

zihaodata

跟子豪兄趣学大数据可视化
11
star
41

MMHuman3D_Tutorials

Jupyter notebook tutorials for MMHuman3D
Jupyter Notebook
11
star
42

plantdoc-wechat

CSS
10
star
43

Unitree_Tutorials

宇树机器人具身智能教程-同济子豪兄
9
star
44

MATLAB_CAM_Tutorials

Live Editor tutorials for MATLAB deep learning toolkit CAM explainability analysis
8
star
45

zihao-self-driving

跟子豪趣学无人驾驶
6
star
46

special-deep-learning-on-rpi

deep learning on raspberry pi
6
star
47

zihao_commercial

子豪兄官方合作伙伴
6
star
48

qianfan_samples

百度智能云千帆大模型平台应用样板间及参考资料-同济子豪兄
6
star
49

Rail-TJU

钢轨表面伤损细粒度图像识别和视觉测量
6
star
50

zihao-piano

同济大学钢琴协会 钢琴教学系列课程
5
star
51

MMEditing_Tutorials

Jupyter notebook tutorials for MMEditing
Jupyter Notebook
5
star
52

Rail-5k-dataset

code of reproducing rail-5k dataset benmark for object detection and semantic segmentation
Python
5
star
53

Captum_Tutorials

Jupyter notebook tutorials for captum
Jupyter Notebook
4
star
54

xiaokuankuan

UCSD
4
star
55

Easy-trail

交通运输噪声振动精准测量便携式解决方案
4
star
56

Amazon_Bedrock_Tutorials

Amazon Bedrock生成式AI和大模型开发,同济子豪兄代码教程
Jupyter Notebook
4
star
57

coze_copilot

“领扣”智能座舱3D虚拟试驾游戏
2
star
58

zihao_prompts

同济子豪兄-大模型提示词
2
star
59

-

Markdown
2
star
60

Mycobot_Tutorials

同济子豪兄大象机械臂Mycobot 280 Pi教程。机器人运动学、逆运动学、Python控制、ROS、具身智能。
Python
2
star
61

TransportX

TransportX:个体交通出行链数据采集轻量化平台
2
star
62

lingma_demo

通义灵码2024云栖大会人形机器人Demo
Python
2
star
63

openvino_tonypi

基于OpenVINO,本地部署大模型智能体Agent,控制TonyPi人形机器人
Jupyter Notebook
2
star
64

zihao-tsne

tsne-pca
1
star
65

opencvtest

test opencv for python
Python
1
star
66

zihaoFEM

simple FEM tutorials for dummies
1
star
67

corning

steam ppt for corning education
1
star
68

Code-Story-Interview-

Outline of Code Story Interview
1
star
69

vlm_arm

机械臂+大模型+多模态=人机协作具身智能体
1
star
70

ChatTTS_Tutorials

Step-by-step Jupyter notebook tutorials for ChatTTS
Jupyter Notebook
1
star
71

zihaodeeplearning

zihao's tutorials of deep learning and nueral networks
1
star