Crypto11
This is an implementation of the standard Golang crypto interfaces that uses PKCS#11 as a backend. The supported features are:
- Generation and retrieval of RSA, DSA and ECDSA keys.
- Importing and retrieval of x509 certificates
- PKCS#1 v1.5 signing.
- PKCS#1 PSS signing.
- PKCS#1 v1.5 decryption
- PKCS#1 OAEP decryption
- ECDSA signing.
- DSA signing.
- Random number generation.
- AES and DES3 encryption and decryption.
- HMAC support.
Signing is done through the crypto.Signer interface and decryption through crypto.Decrypter.
To verify signatures or encrypt messages, retrieve the public key and do it in software.
See the documentation for details of various limitations, especially regarding symmetric crypto.
Installation
Since v1.0.0, crypto11 requires Go v1.11+. Install the library by running:
go get github.com/ThalesIgnite/crypto11
The crypto11 library needs to be configured with information about your PKCS#11 installation. This is either done programmatically
(see the Config
struct in the documentation) or via a configuration
file. The configuration file is a JSON representation of the Config
struct.
A minimal configuration file looks like this:
{
"Path" : "/usr/lib/softhsm/libsofthsm2.so",
"TokenLabel": "token1",
"Pin" : "password"
}
Path
points to the library from your PKCS#11 vendor.TokenLabel
is theCKA_LABEL
of the token you wish to use.Pin
is the password for theCKU_USER
user.
Testing Guidance
Disabling tests
To disable specific tests, set the environment variable CRYPTO11_SKIP=<flags>
where <flags>
is a comma-separated
list of the following options:
CERTS
- disables certificate-related tests. Needed for AWS CloudHSM, which doesn't support certificates.OAEP_LABEL
- disables RSA OAEP encryption tests that use source data encoding parameter (also known as a 'label' in some crypto libraries). Needed for AWS CloudHSM.DSA
- disables DSA tests. Needed for AWS CloudHSM (and any other tokens not supporting DSA).
Testing with Thales Luna HSM
Testing with AWS CloudHSM
A minimal configuration file for CloudHSM will look like this:
{
"Path" : "/opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so",
"TokenLabel": "cavium",
"Pin" : "username:password",
"UseGCMIVFromHSM" : true,
}
To run the test suite you must skip unsupported tests:
CRYPTO11_SKIP=CERTS,OAEP_LABEL,DSA go test -v
Be sure to take note of the supported mechanisms, key types and other idiosyncrasies described at https://docs.aws.amazon.com/cloudhsm/latest/userguide/pkcs11-library.html. Here's a collection of things we noticed when testing with the v2.0.4 PKCS#11 library:
- 1024-bit RSA keys don't appear to be supported, despite what
C_GetMechanismInfo
tells you. - The
CKM_RSA_PKCS_OAEP
mechanism doesn't support source data. I.e. when constructing aCK_RSA_PKCS_OAEP_PARAMS
, one must setpSourceData
toNULL
andulSourceDataLen
to zero. - CloudHSM will generate it's own IV for GCM mode. This is described in their documentation, see footnote 4 on https://docs.aws.amazon.com/cloudhsm/latest/userguide/pkcs11-mechanisms.html.
- It appears that
CKA_ID
values must be unique, otherwise you get aCKR_ATTRIBUTE_VALUE_INVALID
error. - Very rapid session opening can trigger the following error:
C_OpenSession failed with error CKR_ARGUMENTS_BAD : 0x00000007 HSM error 8c: HSM Error: Already maximum number of sessions are issued
Testing with SoftHSM2
To set up a slot:
$ cat softhsm2.conf
directories.tokendir = /home/rjk/go/src/github.com/ThalesIgnite/crypto11/tokens
objectstore.backend = file
log.level = INFO
$ mkdir tokens
$ export SOFTHSM2_CONF=`pwd`/softhsm2.conf
$ softhsm2-util --init-token --slot 0 --label test
=== SO PIN (4-255 characters) ===
Please enter SO PIN: ********
Please reenter SO PIN: ********
=== User PIN (4-255 characters) ===
Please enter user PIN: ********
Please reenter user PIN: ********
The token has been initialized.
The configuration looks like this:
$ cat config
{
"Path" : "/usr/lib/softhsm/libsofthsm2.so",
"TokenLabel": "test",
"Pin" : "password"
}
(At time of writing) OAEP is only partial and HMAC is unsupported, so expect test skips.
Testing with nCipher nShield
In all cases, it's worth enabling nShield PKCS#11 log output:
export CKNFAST_DEBUG=2
To protect keys with a 1/N operator cardset:
$ cat config
{
"Path" : "/opt/nfast/toolkits/pkcs11/libcknfast.so",
"TokenLabel": "rjk",
"Pin" : "password"
}
You can also identify the token by serial number, which in this case means the first 16 hex digits of the operator cardset's token hash:
$ cat config
{
"Path" : "/opt/nfast/toolkits/pkcs11/libcknfast.so",
"TokenSerial": "1d42780caa22efd5",
"Pin" : "password"
}
A card from the cardset must be in the slot when you run go test
.
To protect keys with the module only, use the 'accelerator' token:
$ cat config
{
"Path" : "/opt/nfast/toolkits/pkcs11/libcknfast.so",
"TokenLabel": "accelerator",
"Pin" : "password"
}
(At time of writing) GCM is not implemented, so expect test skips.
Limitations
- The PKCS1v15DecryptOptions SessionKeyLen field is not implemented and an error is returned if it is nonzero. The reason for this is that it is not possible for crypto11 to guarantee the constant-time behavior in the specification. See issue #5 for further discussion.
- Symmetric crypto support via cipher.Block is very slow.
You can use the
BlockModeCloser
API (over 400 times as fast on my computer) but you must call the Close() interface (not found in cipher.BlockMode). See issue #6 for further discussion.
Contributions
Contributions are gratefully received. Before beginning work on sizeable changes, please open an issue first to discuss.
Here are some topics we'd like to cover:
- Full test instructions for additional PKCS#11 implementations.