fpRust
Monad, Functional Programming features for Rust
Why
I love functional programming, Rx-style coding.
However it's hard to implement them in Rust, and there're few libraries to achieve parts of them.
Thus I implemented fpRust. I hope you would like it :)
Features
-
MonadIO, Rx-like (
fp_rust::monadio::MonadIO
)- map/fmap/subscribe
- async/sync
- Support
Future
(to_future()
) with *feature: for_futures
-
Publisher (
fp_rust::publisher::Publisher
)- Support
Stream
implementation(subscribe_as_stream()
) with *feature: for_futures
- Support
-
Fp functions (
fp_rust::fp
)- compose!(), pipe!()
- map!(), reduce!(), filter!(), foldl!(), foldr!()
- contains!(), reverse!()
-
Async (
fp_rust::sync
&fp_rust::handler::HandlerThread
)- simple BlockingQueue (inspired by
Java BlockingQueue
, implemented by built-instd::sync::mpsc::channel
) - HandlerThread (inspired by
Android Handler
, implemented by built-instd::thread
) - WillAsync (inspired by
Java Future
)- Support as a
Future
with *feature: for_futures
- Support as a
- CountDownLatch (inspired by
Java CountDownLatch
, implemented by built-instd::sync::Mutex
)- Support as a
Future
with *feature: for_futures
- Support as a
- simple BlockingQueue (inspired by
-
Cor (
fp_rust::cor::Cor
)- PythonicGenerator-like Coroutine
- yield/yieldFrom
- async/sync
-
Actor (
fp_rust::actor::ActorAsync
)- Pure simple
Actor
model(receive
/send
/spawn
) Context
for keeping internal states- Able to communicate with Parent/Children Actors
- Pure simple
-
DoNotation (
fp_rust::cor::Cor
)- Haskell DoNotation-like, macro
* Pattern matching
Usage
MonadIO (RxObserver-like)
Example:
extern crate fp_rust;
use std::{
thread,
time,
sync::{
Arc,
Mutex,
Condvar,
}
};
use fp_rust::handler::{
Handler,
HandlerThread,
};
use fp_rust::common::SubscriptionFunc;
use fp_rust::monadio::{
MonadIO,
of,
};
use fp_rust::sync::CountDownLatch;
// fmap & map (sync)
let mut _subscription = Arc::new(SubscriptionFunc::new(move |x: Arc<u16>| {
println!("monadio_sync {:?}", x); // monadio_sync 36
assert_eq!(36, *Arc::make_mut(&mut x.clone()));
}));
let subscription = _subscription.clone();
let monadio_sync = MonadIO::just(1)
.fmap(|x| MonadIO::new(move || x * 4))
.map(|x| x * 3)
.map(|x| x * 3);
monadio_sync.subscribe(subscription);
// fmap & map (async)
let mut _handler_observe_on = HandlerThread::new_with_mutex();
let mut _handler_subscribe_on = HandlerThread::new_with_mutex();
let monadio_async = MonadIO::new_with_handlers(
|| {
println!("In string");
String::from("ok")
},
Some(_handler_observe_on.clone()),
Some(_handler_subscribe_on.clone()),
);
let latch = CountDownLatch::new(1);
let latch2 = latch.clone();
thread::sleep(time::Duration::from_millis(1));
let subscription = Arc::new(SubscriptionFunc::new(move |x: Arc<String>| {
println!("monadio_async {:?}", x); // monadio_async ok
latch2.countdown(); // Unlock here
}));
monadio_async.subscribe(subscription);
monadio_async.subscribe(Arc::new(SubscriptionFunc::new(move |x: Arc<String>| {
println!("monadio_async sub2 {:?}", x); // monadio_async sub2 ok
})));
{
let mut handler_observe_on = _handler_observe_on.lock().unwrap();
let mut handler_subscribe_on = _handler_subscribe_on.lock().unwrap();
println!("hh2");
handler_observe_on.start();
handler_subscribe_on.start();
println!("hh2 running");
handler_observe_on.post(RawFunc::new(move || {}));
handler_observe_on.post(RawFunc::new(move || {}));
handler_observe_on.post(RawFunc::new(move || {}));
handler_observe_on.post(RawFunc::new(move || {}));
handler_observe_on.post(RawFunc::new(move || {}));
}
thread::sleep(time::Duration::from_millis(1));
// Waiting for being unlcoked
latch.clone().wait();
Publisher (PubSub-like)
Example:
extern crate fp_rust;
use fp_rust::common::{SubscriptionFunc, RawFunc};
use fp_rust::handler::{Handler, HandlerThread};
use fp_rust::publisher::Publisher;
use std::sync::Arc;
use fp_rust::sync::CountDownLatch;
let mut pub1 = Publisher::new();
pub1.subscribe_fn(|x: Arc<u16>| {
println!("pub1 {:?}", x);
assert_eq!(9, *Arc::make_mut(&mut x.clone()));
});
pub1.publish(9);
let mut _h = HandlerThread::new_with_mutex();
let mut pub2 = Publisher::new_with_handlers(Some(_h.clone()));
let latch = CountDownLatch::new(1);
let latch2 = latch.clone();
let s = Arc::new(SubscriptionFunc::new(move |x: Arc<String>| {
println!("pub2-s1 I got {:?}", x);
latch2.countdown();
}));
pub2.subscribe(s.clone());
pub2.map(move |x: Arc<String>| {
println!("pub2-s2 I got {:?}", x);
});
{
let h = &mut _h.lock().unwrap();
println!("hh2");
h.start();
println!("hh2 running");
h.post(RawFunc::new(move || {}));
h.post(RawFunc::new(move || {}));
h.post(RawFunc::new(move || {}));
h.post(RawFunc::new(move || {}));
h.post(RawFunc::new(move || {}));
}
pub2.publish(String::from("OKOK"));
pub2.publish(String::from("OKOK2"));
pub2.unsubscribe(s.clone());
pub2.publish(String::from("OKOK3"));
latch.clone().wait();
Cor (PythonicGenerator-like)
Example:
#[macro_use]
extern crate fp_rust;
use std::time;
use std::thread;
use fp_rust::cor::Cor;
println!("test_cor_new");
let _cor1 = cor_newmutex!(
|this| {
println!("cor1 started");
let s = cor_yield!(this, Some(String::from("given_to_outside")));
println!("cor1 {:?}", s);
},
String,
i16
);
let cor1 = _cor1.clone();
let _cor2 = cor_newmutex!(
move |this| {
println!("cor2 started");
println!("cor2 yield_from before");
let s = cor_yield_from!(this, cor1, Some(3));
println!("cor2 {:?}", s);
},
i16,
i16
);
{
let cor1 = _cor1.clone();
cor1.lock().unwrap().set_async(true); // NOTE Cor default async
// NOTE cor1 should keep async to avoid deadlock waiting.(waiting for each other)
}
{
let cor2 = _cor2.clone();
cor2.lock().unwrap().set_async(false);
// NOTE cor2 is the entry point, so it could be sync without any deadlock.
}
cor_start!(_cor1);
cor_start!(_cor2);
thread::sleep(time::Duration::from_millis(1));
Do Notation (Haskell DoNotation-like)
Example:
#[macro_use]
extern crate fp_rust;
use std::time;
use std::thread;
use fp_rust::cor::Cor;
let v = Arc::new(Mutex::new(String::from("")));
let _v = v.clone();
do_m!(move |this| {
println!("test_cor_do_m started");
let cor_inner1 = cor_newmutex_and_start!(
|this| {
let s = cor_yield!(this, Some(String::from("1")));
println!("cor_inner1 {:?}", s);
},
String,
i16
);
let cor_inner2 = cor_newmutex_and_start!(
|this| {
let s = cor_yield!(this, Some(String::from("2")));
println!("cor_inner2 {:?}", s);
},
String,
i16
);
let cor_inner3 = cor_newmutex_and_start!(
|this| {
let s = cor_yield!(this, Some(String::from("3")));
println!("cor_inner3 {:?}", s);
},
String,
i16
);
{
(*_v.lock().unwrap()) = [
cor_yield_from!(this, cor_inner1, Some(1)).unwrap(),
cor_yield_from!(this, cor_inner2, Some(2)).unwrap(),
cor_yield_from!(this, cor_inner3, Some(3)).unwrap(),
].join("");
}
});
let _v = v.clone();
{
assert_eq!("123", *_v.lock().unwrap());
}
Fp Functions (Compose, Pipe, Map, Reduce, Filter)
Example:
#[macro_use]
extern crate fp_rust
use fp_rust::fp::{
compose_two,
map, reduce, filter,
};
let add = |x| x + 2;
let multiply = |x| x * 3;
let divide = |x| x / 2;
let result = (compose!(add, multiply, divide))(10);
assert_eq!(17, result);
println!("Composed FnOnce Result is {}", result);
let result = (pipe!(add, multiply, divide))(10);
assert_eq!(18, result);
println!("Piped FnOnce Result is {}", result);
let result = (compose!(reduce!(|a, b| a * b), filter!(|x| *x < 6), map!(|x| x * 2)))(vec![1, 2, 3, 4]);
assert_eq!(Some(8), result);
println!("test_map_reduce_filter Result is {:?}", result);
Actor
Actor common(send/receive/spawn/states)
Example:
use std::time::Duration;
use fp_rust::common::LinkedListAsync;
#[derive(Clone, Debug)]
enum Value {
// Str(String),
Int(i32),
VecStr(Vec<String>),
Spawn,
Shutdown,
}
let result_i32 = LinkedListAsync::<i32>::new();
let result_i32_thread = result_i32.clone();
let result_string = LinkedListAsync::<Vec<String>>::new();
let result_string_thread = result_string.clone();
let mut root = ActorAsync::new(
move |this: &mut ActorAsync<_, _>, msg: Value, context: &mut HashMap<String, Value>| {
match msg {
Value::Spawn => {
println!("Actor Spawn");
let result_i32_thread = result_i32_thread.clone();
let spawned = this.spawn_with_handle(Box::new(
move |this: &mut ActorAsync<_, _>, msg: Value, _| {
match msg {
Value::Int(v) => {
println!("Actor Child Int");
result_i32_thread.push_back(v * 10);
}
Value::Shutdown => {
println!("Actor Child Shutdown");
this.stop();
}
_ => {}
};
},
));
let list = context.get("children_ids").cloned();
let mut list = match list {
Some(Value::VecStr(list)) => list,
_ => Vec::new(),
};
list.push(spawned.get_id());
context.insert("children_ids".into(), Value::VecStr(list));
}
Value::Shutdown => {
println!("Actor Shutdown");
if let Some(Value::VecStr(ids)) = context.get("children_ids") {
result_string_thread.push_back(ids.clone());
}
this.for_each_child(move |id, handle| {
println!("Actor Shutdown id {:?}", id);
handle.send(Value::Shutdown);
});
this.stop();
}
Value::Int(v) => {
println!("Actor Int");
if let Some(Value::VecStr(ids)) = context.get("children_ids") {
for id in ids {
println!("Actor Int id {:?}", id);
if let Some(mut handle) = this.get_handle_child(id) {
handle.send(Value::Int(v));
}
}
}
}
_ => {}
}
},
);
let mut root_handle = root.get_handle();
root.start();
// One child
root_handle.send(Value::Spawn);
root_handle.send(Value::Int(10));
// Two children
root_handle.send(Value::Spawn);
root_handle.send(Value::Int(20));
// Three children
root_handle.send(Value::Spawn);
root_handle.send(Value::Int(30));
// Send Shutdown
root_handle.send(Value::Shutdown);
thread::sleep(Duration::from_millis(1));
// 3 children Actors
assert_eq!(3, result_string.pop_front().unwrap().len());
let mut v = Vec::<Option<i32>>::new();
for _ in 1..7 {
let i = result_i32.pop_front();
println!("Actor {:?}", i);
v.push(i);
}
v.sort();
assert_eq!(
[
Some(100),
Some(200),
Some(200),
Some(300),
Some(300),
Some(300)
],
v.as_slice()
)
Actor Ask (inspired by Akka/Erlang)
Example:
use std::time::Duration;
use fp_rust::common::LinkedListAsync;
#[derive(Clone, Debug)]
enum Value {
AskIntByLinkedListAsync((i32, LinkedListAsync<i32>)),
AskIntByBlockingQueue((i32, BlockingQueue<i32>)),
}
let mut root = ActorAsync::new(
move |_: &mut ActorAsync<_, _>, msg: Value, _: &mut HashMap<String, Value>| match msg {
Value::AskIntByLinkedListAsync(v) => {
println!("Actor AskIntByLinkedListAsync");
v.1.push_back(v.0 * 10);
}
Value::AskIntByBlockingQueue(mut v) => {
println!("Actor AskIntByBlockingQueue");
// NOTE If negative, hanging for testing timeout
if v.0 < 0 {
return;
}
// NOTE General Cases
v.1.offer(v.0 * 10);
} // _ => {}
},
);
let mut root_handle = root.get_handle();
root.start();
// LinkedListAsync<i32>
let result_i32 = LinkedListAsync::<i32>::new();
root_handle.send(Value::AskIntByLinkedListAsync((1, result_i32.clone())));
root_handle.send(Value::AskIntByLinkedListAsync((2, result_i32.clone())));
root_handle.send(Value::AskIntByLinkedListAsync((3, result_i32.clone())));
thread::sleep(Duration::from_millis(1));
let i = result_i32.pop_front();
assert_eq!(Some(10), i);
let i = result_i32.pop_front();
assert_eq!(Some(20), i);
let i = result_i32.pop_front();
assert_eq!(Some(30), i);
// BlockingQueue<i32>
let mut result_i32 = BlockingQueue::<i32>::new();
result_i32.timeout = Some(Duration::from_millis(1));
root_handle.send(Value::AskIntByBlockingQueue((4, result_i32.clone())));
root_handle.send(Value::AskIntByBlockingQueue((5, result_i32.clone())));
root_handle.send(Value::AskIntByBlockingQueue((6, result_i32.clone())));
thread::sleep(Duration::from_millis(1));
let i = result_i32.take();
assert_eq!(Some(40), i);
let i = result_i32.take();
assert_eq!(Some(50), i);
let i = result_i32.take();
assert_eq!(Some(60), i);
// Timeout case:
root_handle.send(Value::AskIntByBlockingQueue((-1, result_i32.clone())));
let i = result_i32.take();
assert_eq!(None, i);