https://github.com/oh-my-ocr/text_renderer
New version release:Text Renderer
Generate text images for training deep learning OCR model (e.g. CRNN). Support both latin and non-latin text.
Setup
- Ubuntu 16.04
- python 3.5+
Install dependencies:
pip3 install -r requirements.txt
Demo
By default, simply run python3 main.py
will generate 20 text images
and a labels.txt file in output/default/
.
Use your own data to generate image
-
Please run
python3 main.py --help
to see all optional arguments and their meanings. And put your own data in corresponding folder. -
Config text effects and fraction in
configs/default.yaml
file(or create a new config file and use it by--config_file
option), here are some examples:
- Run
main.py
file.
Strict mode
For no-latin language(e.g Chinese), it's very common that some fonts only support limited chars. In this case, you will get bad results like these:
Select fonts that support all chars in --chars_file
is annoying.
Run main.py
with --strict
option, renderer will retry get text from
corpus during generate processing until all chars are supported by a font.
Tools
You can use check_font.py
script to check how many chars your font not support in --chars_file
:
python3 tools/check_font.py
checking font ./data/fonts/eng/Hack-Regular.ttf
chars not supported(4971):
['第', '朱', '广', '沪', '联', '自', '治', '县', '驼', '身', '进', '行', '纳', '税', '防', '火', '墙', '掏', '心', '内', '容', '万', '警','钟', '上', '了', '解'...]
0 fonts support all chars(5071) in ./data/chars/chn.txt:
[]
Generate image using GPU
If you want to use GPU to make generate image faster, first compile opencv with CUDA. Compiling OpenCV with CUDA support
Then build Cython part, and add --gpu
option when run main.py
cd libs/gpu
python3 setup.py build_ext --inplace
Debug mode
Run python3 main.py --debug
will save images with extract information.
You can see how perspectiveTransform works and all bounding/rotated boxes.
Todo
See https://github.com/Sanster/text_renderer/projects/1
Citing text_renderer
If you use text_renderer in your research, please consider use the following BibTeX entry.
@misc{text_renderer,
author = {weiqing.chu},
title = {text_renderer},
howpublished = {\url{https://github.com/Sanster/text_renderer}},
year = {2021}
}