• This repository has been archived on 08/Mar/2023
  • Stars
    star
    130
  • Rank 277,575 (Top 6 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created almost 7 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

sick_scan is an open-source project to support the laser scanner of the company SICK using the ROS-framework

IMPORTANT: This repository will not be maintained further. The sources have been completely transferred to the repository https://github.com/SICKAG/sick_scan_xd. The repository will be deleted after 12/31/2022 in 2023 without further notice.

sick_scan

This stack provides a ROS driver for the SICK lidar and radar sensors mentioned in the following list. The SICK MRS6124 is a multi-layer, multi-echo 3D laser scanner that is geared towards rough outdoor environments.

Remark

During the last years we have developed different repositories within the driver development with the projects sick_scan, sick_scan2 and sick_scan_base, with which many lidars and radars of our company can be used under ROS1, ROS2 and generically under C++. For harmonization, due to customer requests and to increase clarity, we decided to combine these developments in the future. As a result of this work, at the end of 2021 we have created the repository sick_scan_xd, where we will continue future developments. We recommend using this new repository for development so that you can continue to benefit from our improvements and additions to our drivers.

Table of Contents

Supported Hardware

This driver should work with all of the following products.

ROS Device Driver for SICK lidar and radar sensors - supported scanner types:

device name part no. description tested?
MRS6124 6065086 24 layer max. range: 200 m, ang. resol. 0.13 [deg] hor., 0.0625 [deg] ver. ✔ [stable]
Scan-Rate: 10 Hz
MRS1104 1081208 4 layer max. range: 64 m, ang. resol. 0.25 [deg] hor., 2.50 [deg] ver. ✔ [stable]
Scan-Rate: 50 Hz, 4x12.5 Hz
LMS1104 1092445 1 layer max. range: 64 m, ang. resol. 0.25 [deg] ✔ [stable]
Scan-Rate: 150 Hz, 4x37.5 Hz
TiM240 1104981 1 layer max. range: 10 m, ang. resol. 1.00 [deg], 240 [deg] ✔ [prototype]
Scan-Rate: 14.5 Hz
TiM433 prototype 1 layer range: 0.05 m ... 15 m, ang. resol. 0.33 [deg], 240 [deg] ✔ [prototype]
Scan-Rate: 15.0 Hz
TiM443 prototype 1 layer range: 0.05 m ... 15 m, ang. resol. 0.33 [deg], 240 [deg] ✔ [prototype]
Scan-Rate: 15.0 Hz
TiM551 1060445 1 layer max. range: 10 m, ang. resol. 1.00[deg] ✔ [stable]
Scan-Rate: 15 Hz
TiM561 1071419 1 layer max. range: 10 m, ang. resol. 0.33 [deg] ✔ [stable]
Scan-Rate: 15 Hz
TiM571 1079742 1 layer max. range: 25 m, ang. resol. 0.33 [deg] ✔ [stable]
Scan-Rate: 15 Hz
TiM771S 1105052 1 layer max. range: 25 m, ang. resol. 0.33 [deg] ✔ [stable]
Scan-Rate: 15 Hz
TiM781 1096807 1 layer max. range: 25 m, ang. resol. 0.33 [deg] ✔ [stable]
Scan-Rate: 15 Hz
TiM781S 1096363 1 layer max. range: 25 m, ang. resol. 0.33 [deg] ✔ [stable]
Scan-Rate: 15 Hz
LMS511-10100 PRO e.g. 1046135 1 layer max. range: 80 m, ang. resol. 0.167 [deg] ✔ [stable]
Scan-Rate: 100 Hz
LMS1xx-Family e.g. 1041114 1 layer max. range: 28 m, ang. resol. 0.25 [deg] ✔ [stable]
Scan-Rate: 15 Hz
NAV310 e.g. 1052928 1 layer max. range: 250 m, ang. resol. 0.125 [deg] ✔ [stable]
Scan-Rate: 8 Hz
NAV210+NAV245 e.g. 1074308 1 layer max. range: 100 m, ang. resol. 0.25 [deg] ✔ [stable]
Scan-Rate: 25 Hz
LMS4xxx-Family e.g. 1091423 1 layer max. range: 3 m, ang. resol. 0,0833 [deg] ✔ [stable]
Scan-Rate: 600 Hz
Opening angle: +/- 50 [deg]
RMS3xx 8021530 Radar Sensor ✔ [stable]

IMU Support

Devices of the MRS6xxx and MRS1xxx series are available with an optionally built-in IMU. Further information on the implementation and use of the experimental Imu support can be found on the Imu page.

Start Node

Use the following command to start ROS node:

  • For MRS6124:
roslaunch sick_scan sick_mrs_6xxx.launch
  • For MRS1104:
roslaunch sick_scan sick_mrs_1xxx.launch
  • For LMS1104:
roslaunch sick_scan sick_lms_1xxx.launch
  • For TiM240-prototype:
roslaunch sick_scan sick_tim_240.launch
  • For TiM4xx-family:
roslaunch sick_scan sick_tim_4xx.launch
  • For TiM5xx-family:
roslaunch sick_scan sick_tim_5xx.launch
  • For TiM7xx-family (no safety scanner):
roslaunch sick_scan sick_tim_7xx.launch
  • For TiM7xxS-family (safety scanner):
roslaunch sick_scan sick_tim_7xxS.launch
  • For LMS1xx-family:
roslaunch sick_scan sick_lms_1xx.launch
  • For LMS5xx-family:
roslaunch sick_scan sick_lms_5xx.launch
  • For LMS4xxx-family:
roslaunch sick_scan sick_lms_4xxx.launch
  • For NAV210:
roslaunch sick_scan sick_nav_2xx.launch
  • For NAV245:
roslaunch sick_scan sick_nav_2xx.launch
  • For NAV310:
roslaunch sick_scan sick_nav_3xx.launch
  • For RMS3xx-family:
roslaunch sick_scan sick_rms_3xx.launch (under
opment)

Starting Scanner with Specific Ip Address

To start the scanner with a specific IP address, the launch command can be used for most launch files as follows. The hostname is the ip-address of the scanner:

roslaunch <launch-file> hostname:=<ip-address>

e.g.

roslaunch sick_scan sick_tim_5xx.launch hostname:=192.168.0.71

Start Multiple Nodes

Take the launchfile "sick_tim_5xx_twin.launch" as an example. Rempping the scan and cloud topics is essential to distinguish the scanndata and provide TF information.

Parameter

The use of the parameters can be looked up in the launch files. This is also recommended as a starting point.

Common parameters

  • scanner_type Name of the used scanner. Usually this is also the name of the launch file. This entry is used to differentiate between the various scanner properties within the software code.

  • hostname IP-address of the scanner (default: 192.168.0.1)

  • port IP-port of the scanner (default: 2112)

  • min_ang Start angle in [rad]

  • max_ang End angle in [rad]

  • use_binary_protocol Switch between SOPAS Binary and SOPAS ASCII protocol

  • intensity Enable or disable transport of intensity values

  • intensity_resolution_16bit If true, the intensity values is transferred as 16 bit value. If false, as 8 bit value.

  • min_intensity If min_intensity > 0, all range values in a LaserScan message are set to infinity, if their intensity value is below min_intensity

  • cloud_topic Topic name of the published pointcloud2 data

  • frame_id Frame id used for the published data

Further useful parameters and features

  • timelimit Timelimit in [sec] for max. wait time of incoming sensor reply

  • sw_pll_only_publish If true, the internal Software PLL is fored to sync the scan generation time stamp to a system timestamp

  • Angle compensation: For highest angle accuracy the NAV-Lidar series supports an angle compensation mechanism.

  • Field monitoring: The LMS1xx, LMS5xx, TiM7xx and TiM7xxS families have extended settings for field monitoring.

Sopas Mode

This driver supports both COLA-B (binary) and COLA-A (ASCII) communication with the laser scanner. Binary mode is activated by default. Since this mode generates less network traffic. If the communication mode set in the scanner memory is different from that used by the driver, the scanner's communication mode is changed. This requires a restart of the TCP-IP connection, which can extend the start time by up to 30 seconds. There are two ways to prevent this:

  1. [Recommended] Set the communication mode with the SOPAS ET software to binary and save this setting in the scanner's EEPROM.
  2. Use the parameter "use_binary_protocol" to overwrite the default settings of the driver.
  3. Setting "use_binary_protocol" to "False" activates COLA-A and disables COLA-B (default)

Bugs and Feature Requests

  • Stability issues: Driver is experimental for the RMS3xx
  • Sopas protocol mapping: -- All scanners: COLA-B (Binary)
  • Software should be further tested, documented and beautified
  • Setting of "topic" should not be hardcoded to /cloud in the future. This allows the simultaneous operation of several scanners. Each point cloud can then be converted using its own TF transformation.

Tools

Various tools exist in the repository to improve the operation of the scanners. It is also recommended to read the following section "Troubleshooting". Overview of the tools:

  • Search for scanner in the network: Use the Python3 tool "sick_generic_device_finder.py" in the tools/sick_generic_device_finder directory. The tools will output the IP addresses of the connected scanners and some more information about the scanner.
    Call it with python3, i.e. python3 sick_generic_device_finder.py
  • Setting new IP address: With the help of the parameter "new_IP" a new IP address can be assigned when calling the node sick_scan. The launch file sick_new_ip.launch in the launch directory shows an example of how to use this parameter.
  • Converting of pointclouds to images: With the tool pcl_converter.cpp one can convert pointcloud2-data to image. That is especial convenient for 24-layers scanners like the MRS6124.
  • Setting up a brand new scanner: To set up a brand new scanner, it is recommended to use the two tools "sick_generic_device_finder.py" to find the scanner in the network and the launch file sick_new_ip.launch to set a new IP address. If further settings are to be saved that cannot be made via ROS parameters, we recommend using the Windows tool "Sopas ET" from SICK.
  • Unit tests: For a quick unit test after installation without the sensor hardware, a test server is provided to simulate a scanner. See emulator for further details.

Troubleshooting

  1. Check Scanner IP in the launch file.
  2. Check Ethernet connection to scanner with netcat e.g. nc -z -v -w5 $SCANNERIPADDRESS 2112. For further details about setting up the correct ip settings see IP configuration
  3. View node startup output wether the IP connection could be established
  4. Check the scanner status using the LEDs on the device. The LED codes are described in the above mentioned operation manuals.
  5. Further testing and troubleshooting informations can found in the file test/readme_testplan.txt
  6. If you stop the scanner in your debugging IDE or by other hard interruption (like Ctrl-C), you must wait until 60 sec. before the scanner is up and running again. During this time the MRS6124 reconnects twice. If you do not wait this waiting time you could see one of the following messages:
    • TCP connection error
    • Error-Message 0x0d
  7. Amplitude values in rviz: If you see only one color in rviz try the following: Set the min/max-Range of intensity display in the range [0...200] and switch on the intensity flag in the launch file
  8. In case of network problems check your own ip address and the ip address of your laser scanner (by using SOPAS ET).
    • List of own IP-addresses: ifconfig|grep "inet addr"
    • Try to ping scanner ip address (used in launch file)
  9. If the driver stops during init phase please stop the driver with ctrl-c and restart (could be caused due to protocol ASCII/Binary cola-dialect).

FAQ

Support

  • In case of technical support please open a new issue. For optimal support, add the following information to your request:
  1. Scanner model name,
  2. Ros node startup log,
  3. Sopas file of your scanner configuration. The instructions at http://sickusablog.com/create-and-download-a-sopas-file/ show how to create the Sopas file.
  • In case of application support please use https://supportportal.sick.com .
  • Issue Handling: Issues, for which no reply was received from the questioner for more than 7 days, are closed by us because we assume that the user has solved the problem.

Installation

In the following instructions, replace <rosdistro> with the name of your ROS distro (e.g., indigo).

From Binaries

The driver is released at longer intervals as a binary package and can therefore be installed via the package manager. To be able to use all new functions of the driver, the driver should be built from the sources published in this reposity:

sudo apt-get install ros-<rosdistro>-sick-scan

From Source

source /opt/ros/<rosdistro>/setup.bash
mkdir -p ~/ros_catkin_ws/src/
cd ~/ros_catkin_ws/src/
git clone git://github.com/SICKAG/sick_scan.git
cd ..
catkin_make install
source ~/ros_catkin_ws/install/setup.bash

Development branch

A "devel" branch is also maintained for the very latest developments and tests. Add-ons and support for brand new scanners are usually first tested in this branch and can be checked out as needed as follows:

source /opt/ros/<rosdistro>/setup.bash
mkdir -p ~/ros_catkin_ws/src/
cd ~/ros_catkin_ws/src/
git clone -b devel --single-branch git://github.com/SICKAG/sick_scan.git
cd ..
catkin_make install
source ~/ros_catkin_ws/install/setup.bash

Quick Start

roslaunch sick_scan sick_mrs6xxx.launch
rosrun rviz rviz
publish to point cloud

Testing

The sick_scan_test program was developed for testing the driver. This program checks elementary properties of the scanner. In a first implementation stage, the shots per scan are checked. The test program works according to the following principle:

  1. The parameters from an original launch file are read.
  2. These parameters are modified according to the instructions in the test control file.
  3. The modified parameters including all other parameter settings from the original launch file are copied to a test launch file.
  4. The test launch file is started.
  5. The parameters are checked.
  6. The result of the check is transferred to a result file. The basic procedure can be seen in the following figure: Alt text More information about the structure of the individual files in the test run can be found here:

Keywords

MRS1000 MRS1104 LMS1000 LMS1104 MRS6000 MRS6124 RMS3xx RMS320 ROS LiDAR SICK LiDAR SICK Laser SICK Laserscanner SICK Radar LMS1xx MRS1xxx LMS1xxx MRS6xxx TiM5xx TiM551 TiM561 TiM571 TiM781 TiM781S LMS5xx LMS511 NAV210 NAV245 NAV310

Creators

Michael Lehning

on behalf of SICK AG


Lehning Logo

More Repositories

1

sick_scan_xd

Based on the sick_scan drivers for ROS1, sick_scan_xd merges sick_scan, sick_scan2 and sick_scan_base repositories. The driver supports both Linux (native, ROS1, ROS2) and Windows (native and ROS2).
C++
96
star
2

sick_safetyscanners

ROS driver for SICK safety laser scanners
C++
61
star
3

sick_scan2

sick_scan2 is an open-source project to support the laser scanner of the company SICK using the ROS2 framework
C++
55
star
4

sick_safetyscanners2

ROS2 driver for SICK safety laser scanners
C++
28
star
5

collage

Library to make creating and using of micro frontends convenient and easy
TypeScript
28
star
6

sick_lidar_localization

C++
24
star
7

sick_ldmrs_laser

A ROS driver for the SICK LD-MRS series of laser scanners.
C++
24
star
8

sick_scan_base

Generic C++ library for SICK laser scanner. Currently we support Windows and Ubuntu 18.04LTS for x86 architectures with this software. Within the demo the gathered data is stored at regular intervals as CSV data and as an image file in JPEG format. The image file shows the scan data in the top view.
C++
21
star
9

sick_safetyscanners_base

CPP (C++) Driver for SICK safety laser scanners
C++
12
star
10

sick_line_guidance

Sick_line_guidance is an open-source project to support the line guidance sensors OLS10, OLS20 and MLS (based on CANopen-interface) of the company SICK using the ROS-framework
C++
10
star
11

sick_safetyscanners_isaac

NVIDIA Isaac Integration Layer for SICK safety laser scanners
C++
9
star
12

sick_safevisionary_ros2

ROS2 driver for SICK safeVisionary 3D cameras
C++
8
star
13

libsick_ldmrs

This package contains a library for communicating with the SICK LD-MRS line of laser scanners. For a ROS wrapper, see sick_ldmrs_laser.
C++
7
star
14

sick_visionary_ros

interface to sick visionary devices from ROS nodes
C++
7
star
15

sick_visionary_t

Repository for ROS-enabled 3D sensors from Sick.
C++
6
star
16

SICK-AppSpace-SDK-Docs

Provides release notes, installation instructions and a tutorial for your first SensorApp for the SICK AppSpace SDK.
HTML
6
star
17

sick_safetyscanners-release

4
star
18

sick_visionary_samples

publish open source samples (supplementary material)
C++
3
star
19

sick_scan_rest_client

The REST-API-Client reads and writes variables and calls methods via the REST interface of the scanner.
Python
3
star
20

sick_visionary_cpp_shared

shared cpp code used api, sdk, doc, samples projects
C++
3
star
21

CP210xRelay

Windows command line tool for controlling a usb relay board based on a CP210x chip
C++
3
star
22

ausbildung

GitHub-Seite der Ausbildungsabteilung der SICK AG
HTML
3
star
23

pumolink

This library allows you to connect Python classes and OpenUSD Prims using decorators.
Python
3
star
24

gui-check

UI testing library for Java
Java
3
star
25

sick_safetyscanners2_interfaces

Interfaces for the ROS2 driver for SICK safety laser scanners
CMake
3
star
26

ScanSegmentAPI

This repo contains example code which demonstrates how to receive and decode the streamed data of 3D and 2D laser scanners.
Python
3
star
27

sick_scan-release

3
star
28

sick_scan2-release

2
star
29

SICK-Solution-Hackathon

C#
2
star
30

Ranger3PythonExamples

Share example code on how to interface with a Ranger3/Ruler3 camera using python.
2
star
31

sick_visionary_ros-release

Release sick_visionary_ros for ROS buildfarm
2
star
32

SICK-LiDAR-API-Documentation-and-Examples

This repository contains information on how to communicate with SICK LiDARs such as the multiScan100 family or the picoScan100 family.
2
star
33

sick_safevisionary_base

C++ driver for SICK safeVisionary 3D cameras
C++
2
star
34

commute-logger

2
star
35

sick_tdc-e-developers-documentation

Go
2
star
36

sick_safevisionary_ros1

ROS1 driver for SICK safeVisionary 3D cameras
C++
2
star
37

sick_visionary_t-release

1
star
38

ConstraintsNetwork

C++
1
star
39

sick_visionary_cpp_samples

publish open source samples (supplementary material)
C++
1
star
40

sick_safetyscanners2-release

1
star
41

consolectrl

consolectrl
1
star
42

sick_visionary_cpp_base

C++ supporting library
C++
1
star
43

SICK_AppSpace_CodingStarterKit

Providing info material regarding the SICK AppSpace CodingStarterKit GitHub organization.
1
star
44

sick_visionary_python_base

Python support library
Python
1
star