• Stars
    star
    1,169
  • Rank 39,968 (Top 0.8 %)
  • Language
    C#
  • License
    MIT License
  • Created over 9 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Twitter Snowflake-alike ID generator for .Net

Logo IdGen

Build status NuGet version

Twitter Snowflake-alike ID generator for .Net. Available as Nuget package

Why

In certain situations you need a low-latency, distributed, uncoordinated, (roughly) time ordered, compact and highly available Id generation system. This project was inspired by Twitter's Snowflake project which has been retired. Note that this project was inspired by Snowflake but is not an exact implementation. This library provides a basis for Id generation; it does not provide a service for handing out these Id's nor does it provide generator-id ('worker-id') coordination.

How it works

IdGen generates, like Snowflake, 64 bit Id's. The Sign Bit is unused since this can cause incorrect ordering on some systems that cannot use unsigned types and/or make it hard to get correct ordering. So, in effect, IdGen generates 63 bit Id's. An Id consists of 3 parts:

  • Timestamp
  • Generator-id
  • Sequence

An Id generated with a Default IdStructure is structured as follows:

Id structure

However, using the IdStructure class you can tune the structure of the created Id's to your own needs; you can use 45 bits for the timestamp, 2 bits for the generator-id and 16 bits for the sequence if you prefer. As long as all 3 parts (timestamp, generator and sequence) add up to 63 bits you're good to go!

The timestamp-part of the Id should speak for itself; by default this is incremented every millisecond and represents the number of milliseconds since a certain epoch. However, IdGen relies on an ITimeSource which uses a 'tick' that can be defined to be anything; be it a millisecond (default), a second or even a day or nanosecond (hardware support etc. permitting). By default IdGen uses 2015-01-01 0:00:00Z as epoch, but you can specify a custom epoch too.

The generator-id-part of the Id is the part that you 'configure'; it could correspond to a host, thread, datacenter or continent: it's up to you. However, the generator-id should be unique in the system: if you have several hosts or threads generating Id's, each host or thread should have it's own generator-id. This could be based on the hostname, a config-file value or even be retrieved from an coordinating service. Remember: a generator-id should be unique within the entire system to avoid collisions!

The sequence-part is simply a value that is incremented each time a new Id is generated within the same tick (again, by default, a millisecond but can be anything); it is reset every time the tick changes.

System Clock Dependency

We recommend you use NTP to keep your system clock accurate. IdGen protects from non-monotonic clocks, i.e. clocks that run backwards. The DefaultTimeSource relies on a 64bit monotonic, increasing only, system counter. However, we still recommend you use NTP to keep your system clock accurate; this will prevent duplicate Id's between system restarts for example.

The DefaultTimeSource relies on a Stopwatch for calculating the 'ticks' but you can implement your own time source by simply implementing the ITimeSource interface.

Getting started

Install the Nuget package and write the following code:

using IdGen;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        var generator = new IdGenerator(0);
        var id = generator.CreateId();
        // Example id: 862817670527975424
    }
}

Voila. You have created your first Id! Want to create 100 Id's? Instead of:

var id = generator.CreateId();

write:

var id = generator.Take(100);

This is because the IdGenerator() implements IEnumerable providing you with a never-ending stream of Id's (so you might want to be careful doing a .Select(...) or Count() on it!).

The above example creates a default IdGenerator with the GeneratorId (or: 'Worker Id') set to 0 and using a DefaultTimeSource. If you're using multiple generators (across machines or in separate threads or...) you'll want to make sure each generator is assigned it's own unique Id. One way of doing this is by simply storing a value in your configuration file for example, another way may involve a service handing out GeneratorId's to machines/threads. IdGen does not provide a solution for this since each project or setup may have different requirements or infrastructure to provide these generator-id's.

The below sample is a bit more complicated; we set a custom epoch, define our own id-structure for generated Id's and then display some information about the setup:

using IdGen;
using System;

class Program
{
    static void Main(string[] args)
    {
        // Let's say we take april 1st 2020 as our epoch
        var epoch = new DateTime(2020, 4, 1, 0, 0, 0, DateTimeKind.Utc);
            
        // Create an ID with 45 bits for timestamp, 2 for generator-id 
        // and 16 for sequence
        var structure = new IdStructure(45, 2, 16);
            
        // Prepare options
        var options = new IdGeneratorOptions(structure, new DefaultTimeSource(epoch));
            
        // Create an IdGenerator with it's generator-id set to 0, our custom epoch 
        // and id-structure
        var generator = new IdGenerator(0, options);

        // Let's ask the id-structure how many generators we could instantiate 
        // in this setup (2 bits)
        Console.WriteLine("Max. generators       : {0}", structure.MaxGenerators);

        // Let's ask the id-structure how many sequential Id's we could generate 
        // in a single ms in this setup (16 bits)
        Console.WriteLine("Id's/ms per generator : {0}", structure.MaxSequenceIds);

        // Let's calculate the number of Id's we could generate, per ms, should we use
        // the maximum number of generators
        Console.WriteLine("Id's/ms total         : {0}", structure.MaxGenerators * structure.MaxSequenceIds);


        // Let's ask the id-structure configuration for how long we could generate Id's before
        // we experience a 'wraparound' of the timestamp
        Console.WriteLine("Wraparound interval   : {0}", structure.WraparoundInterval(generator.Options.TimeSource));

        // And finally: let's ask the id-structure when this wraparound will happen
        // (we'll have to tell it the generator's epoch)
        Console.WriteLine("Wraparound date       : {0}", structure.WraparoundDate(generator.Options.TimeSource.Epoch, generator.Options.TimeSource).ToString("O"));
    }
}

Output:

Max. generators       : 4
Id's/ms per generator : 65536
Id's/ms total         : 262144
Wraparound interval   : 407226.12:41:28.8320000 (about 1114 years)
Wraparound date       : 3135-03-14T12:41:28.8320000+00:00

IdGen also provides an ITimeSouce interface; this can be handy for unittesting purposes or if you want to provide a time-source for the timestamp part of your Id's that is not based on the system time. For unittesting we use our own MockTimeSource.

<configuration>
  <configSections>
    <section name="idGenSection" type="IdGen.Configuration.IdGeneratorsSection, IdGen.Configuration" />
  </configSections>

  <idGenSection>
    <idGenerators>
      <idGenerator name="foo" id="123"  epoch="2016-01-02T12:34:56" timestampBits="39" generatorIdBits="11" sequenceBits="13" tickDuration="0:00:00.001" />
      <idGenerator name="bar" id="987"  epoch="2016-02-01 01:23:45" timestampBits="20" generatorIdBits="21" sequenceBits="22" />
      <idGenerator name="baz" id="2047" epoch="2016-02-29"          timestampBits="21" generatorIdBits="21" sequenceBits="21" sequenceOverflowStrategy="SpinWait" />
    </idGenerators>
  </idGenSection>

</configuration>

The attributes (name, id, epoch, timestampBits, generatorIdBits and sequenceBits) are required. The tickDuration is optional and defaults to the default tickduration from a DefaultTimeSource. The sequenceOverflowStrategy is optional too and defaults to Throw. Valid DateTime notations for the epoch are:

  • yyyy-MM-ddTHH:mm:ss
  • yyyy-MM-dd HH:mm:ss
  • yyyy-MM-dd

You can get the IdGenerator from the config using the following code:

var generator = AppConfigFactory.GetFromConfig("foo");

Dependency Injection

There is an IdGen.DependencyInjection NuGet package available that allows for easy integration with the commonly used Microsoft.Extensions.DependencyInjection.

Usage is straightforward:

services.AddIdGen(123); // Where 123 is the generator-id

Or, when you want to use non-default options:

services.AddIdGen(123, () => new IdGeneratorOptions(...));  // Where 123 is the generator-id

This registers both an IdGenerator as well as an IIdGenerator<long>, both pointing to the same singleton generator.

Upgrading from 2.x to 3.x

Upgrading from 2.x to 3.x should be pretty straightforward. The following things have changed:

  • Most of the constructor overloads for the IdGenerator have been replaced with a single constructor which accepts IdGeneratorOptions that contains the ITimeSource, IdStructure and SequenceOverflowStrategy
  • The MaskConfig class is now more appropriately named IdStructure since it describes the structure of the generated ID's.
  • The UseSpinWait property has moved to the IdGeneratorOptions and is now an enum of type SequenceOverflowStrategy instead of a boolean value. Note that this property has also been renamed in the config file (from useSpinWait to sequenceOverflowStrategy) and is no longer a boolean but requires one of the values from SequenceOverflowStrategy.
  • ID is now Id (only used as return value by the FromId() method)

The generated 2.x ID's are still compatible with 3.x ID's. This release is mostly better and more consistent naming of objects.

FAQ

Q: Help, I'm getting duplicate ID's or collisions?

A: Then you're probably not using IdGen as intended: It should be a singleton (per thread/process/host/...), and if you insist on having multiple instances around they should all have their own unique GeneratorId.

A: Also: Don't change the structure; once you've picked an IdStructure and go into production commit to it, stick with it. This means that careful planning is needed to ensure enough ID's can be generated by enough generators for long enough. Although changing the structure at a later stage isn't impossible, careful consideration is needed to ensure no collisions will occur.

Q: I'm experiencing weird results when these ID's are used in Javascript?

A: Remember that generated ID's are 64 (actually 63) bits wide. Javascript uses floats to store all numbers and the maximum integer value you can safely store is 53 bits. If you need to handle these ID's in Javascript, treat them as strings.


Icon made by Freepik from www.flaticon.com is licensed by CC 3.0.

More Repositories

1

TwoFactorAuth

PHP library for Two Factor Authentication (TFA / 2FA)
PHP
1,063
star
2

NUlid

.Net ULID implementation
C#
352
star
3

TwoFactorAuth.Net

.Net library for Two Factor Authentication (TFA / 2FA)
C#
337
star
4

MongoRepository

Repository abstraction layer on top of Official MongoDB C# driver
C#
309
star
5

NIdenticon

NIdenticon is a library for creating simple Identicons
C#
95
star
6

NGeoNames

Inspired by https://github.com/AReallyGoodName/OfflineReverseGeocode
C#
87
star
7

IP2Country

Ip to country mapping
C#
48
star
8

SimpleFeedReader

Easy to use, simple, Syndication feed reader
C#
32
star
9

NPushOver

Full fledged, async, .Net Pushover client
C#
24
star
10

NISOCountries

Always up-to-date (.Net) ISO Country list
C#
24
star
11

DebuggableSelfInstallingService

A Debuggable, Self-Installing Windows Service Template based on James Michael Hare's excellent blogposts
C#
23
star
12

TimeZoneMapper

Library for mapping *N*X TimeZone ID's (e.g. Europe/Amsterdam) to .Net's TimeZoneInfo classes.
C#
18
star
13

ITimer

Provides a testable abstraction and alternative to System.Threading.Timer and System.Timers.Timer. Targets netstandard2.0 and higher.
C#
16
star
14

TextTableBuilder

Simple, opinionated, modern table builder
C#
12
star
15

DSMRParser.Net

DSMR Parser for .Net
C#
9
star
16

HumanoID

Friendly ID generator. Converts integers to words and back.
PHP
7
star
17

NEnvoy

.Net Enphase Envoy client library
C#
7
star
18

IClock

Provides a testable abstraction and alternative to DateTime.Now / DateTime.UtcNow
C#
6
star
19

2FACLIClient

LastPass 2FA CLI Client
C#
6
star
20

DebuggableSelfInstallingOwinService

A Self-hosted OWIN Windows Service project template that is easier to run and debug than the default Windows Service project template
C#
6
star
21

WordClock

Hobby project building a word clock with friends.
C++
5
star
22

AutoRefreshTokenHttpMessageHandler

A thread-safe implementation of a DelegatingHandler that automatically refreshes the access token when the access token expires whilst **not** serializing all requests.
C#
4
star
23

RobThree

3
star
24

NaarDeKloot.nl

Repository for NaarDeKloot.nl
CSS
3
star
25

IPNetworkHelper

Provides helper (extension)methods for working with IPNetworks
C#
3
star
26

NetnummersNL

Interactieve kaart van netnummers (kengetallen) in Nederland / Interactive map of area codes for the Netherlands
HTML
2
star
27

SAC9010QC-SAC12010QC

Reverse engineered IR protocol for HomeFit Living / Alaska SAC9010QC/SAC12010QC (NEC 756504012 based) remote control
C++
2
star
28

P1-meter

P1 Meter (Wemos D1 mini) - Serial to HTTP POST. See also https://github.com/RobThree/DSMR.Net
C++
2
star
29

NuGetProxy

NuGet proxy that allows anonymous access to NuGet servers that require authentication.
C#
2
star
30

NMSSQLReplication

.Net library for retrieving (and managing) MSSQL Replication information
C#
1
star
31

NLog.Targets.Pushover

NLog.Targets.Pushover is a custom target for NLog enabling you to send logging messages to the Pushover service
C#
1
star
32

RSV

.Net library for reading / writing RSV files
C#
1
star
33

HttpNamespaceManager

Paul Wheeler's HttpNamespacemanager - with minor improvements
C#
1
star