• Stars
    star
    1,070
  • Rank 43,204 (Top 0.9 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net

The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture"

Our paper is accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Update

Introduction

We propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g. , ResNet, ResNeXt, BigLittleNet, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models.

Sample

Res2Net module

Useage

Requirement

PyTorch>=0.4.1

Examples

git clone https://github.com/gasvn/Res2Net.git

from res2net import res2net50
model = res2net50(pretrained=True)

Input image should be normalized as follows:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])

(By default, the model will be downloaded automatically. If the default download link is not available, please refer to the Download Link listed on Pretrained models.)

Pretrained models

model #Params MACCs top-1 error top-5 error Link
Res2Net-50-48w-2s 25.29M 4.2 22.68 6.47 OneDrive
Res2Net-50-26w-4s 25.70M 4.2 22.01 6.15 OneDrive
Res2Net-50-14w-8s 25.06M 4.2 21.86 6.14 OneDrive
Res2Net-50-26w-6s 37.05M 6.3 21.42 5.87 OneDrive
Res2Net-50-26w-8s 48.40M 8.3 20.80 5.63 OneDrive
Res2Net-101-26w-4s 45.21M 8.1 20.81 5.57 OneDrive
Res2NeXt-50 24.67M 4.2 21.76 6.09 OneDrive
Res2Net-DLA-60 21.15M 4.2 21.53 5.80 OneDrive
Res2NeXt-DLA-60 17.33M 3.6 21.55 5.86 OneDrive
Res2Net-v1b-50 25.72M 4.5 19.73 4.96 Link
Res2Net-v1b-101 45.23M 8.3 18.77 4.64 Link
Res2Net-v1d-200-SSLD 76.21M 15.7 14.87 2.58 PaddlePaddleLink

News

  • Res2Net_v1b is now available.
  • You can load the pretrained model by using pretrained = True.

The download link from Baidu Disk is now available. (Baidu Disk password: vbix)

Applications

Other applications such as Classification, Instance segmentation, Object detection, Semantic segmentation, Salient object detection, Class activation map,Tumor segmentation on CT scans can be found on https://mmcheng.net/res2net/ .

Citation

If you find this work or code is helpful in your research, please cite:

@article{gao2019res2net,
  title={Res2Net: A New Multi-scale Backbone Architecture},
  author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
  journal={IEEE TPAMI},
  year={2021},
  doi={10.1109/TPAMI.2019.2938758}, 
}

Contact

If you have any questions, feel free to E-mail me via: shgao(at)live.com

License

The code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for Noncommercial use only. Any commercial use should get formal permission first.