• Stars
    star
    181
  • Rank 212,110 (Top 5 %)
  • Language
    Shell
  • License
    Apache License 2.0
  • Created about 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Prebuilt binary for TensorFlowLite's standalone installer. For RaspberryPi. A very lightweight installer. I provide a FlexDelegate, MediaPipe Custom OP and XNNPACK enabled binary.

TensorflowLite-bin

Prebuilt binary for TensorflowLite's standalone installer. For RaspberryPi. I provide a FlexDelegate, XNNPACK enabled binary.

Here is the Tensorflow's official README.

If you want the best performance with RaspberryPi4/3, install Ubuntu 18.04+ aarch64 (64bit) instead of Raspbian armv7l (32bit). The official Tensorflow Lite is performance tuned for aarch64. On aarch64 OS, performance is about 4 times higher than on armv7l OS. How to install Ubuntu 19.10 aarch64 (64bit) on RaspberryPi4 - Qiita - PINTO

The full build package for Tensorflow can be found here (Tensorflow-bin).

TensorFlow Lite will continue to have TensorFlow Lite builtin ops optimized for mobile and embedded devices. However, TensorFlow Lite models can now use a subset of TensorFlow ops when TFLite builtin ops are not sufficient. 1. TensorflowLite-flexdelegate (Tensorflow Select Ops) - Github - PINTO0309 2. Select TensorFlow operators to use in TensorFlow Lite

A repository that shares tuning results of trained models generated by Tensorflow. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization), Quantization-aware training. PINTO_model_zoo - Github - PINTO0309

Reference articles

Python API packages

Device OS Distribution Architecture Python ver Note
RaspberryPi3/4 Raspbian/Debian Stretch armhf / armv7l 3.5 32bit
RaspberryPi3/4 Raspbian/Debian Stretch aarch64 / armv8 3.5 64bit
RaspberryPi3/4 Raspbian/Debian Buster armhf / armv7l 3.7 / 2.7 32bit
RaspberryPi3/4 Raspbian/Debian Buster aarch64 / armv8 3.7 / 2.7 64bit
RaspberryPi3/4 Ubuntu 20.04 Focal armhf / armv7l 3.8 32bit
RaspberryPi3/4 Ubuntu 20.04 Focal aarch64 / armv8 3.8 64bit
RaspberryPi3/4 Ubuntu 21.04/Debian/RaspberryPiOS Hirsute/Bullseye armhf / armv7l 3.9 32bit
RaspberryPi3/4 Ubuntu 21.04/Debian/RaspberryPiOS Hirsute/Bullseye aarch64 / armv8 3.9 64bit
RaspberryPi3/4 Ubuntu 22.04 Jammy armhf / armv7l 3.10 32bit
RaspberryPi3/4 Ubuntu 22.04 Jammy aarch64 / armv8 3.10 64bit
RaspberryPi3/4 Debian Bookworm armhf / armv7l 3.11 32bit
RaspberryPi3/4 Debian Bookworm aarch64 / armv8 3.11 64bit

Usage

$ sudo apt install -y \
swig libjpeg-dev zlib1g-dev python3-dev \
unzip wget python3-pip curl git cmake make
$ sudo pip3 install numpy==1.24.3

$ TFVER=2.12.0

$ PYVER=39
or
$ PYVER=38
or
$ PYVER=310
or
$ PYVER=311

$ ARCH=aarch64
or
$ ARCH=armhf

$ sudo -H pip3 install \
--no-cache-dir \
https://github.com/PINTO0309/TensorflowLite-bin/releases/download/v${TFVER}/tflite_runtime-${TFVER/-/}-cp${PYVER}-none-linux_${ARCH}.whl

Note

Unlike tensorflow this will be installed to a tflite_runtime namespace. You can then use the Tensorflow Lite interpreter as.

from tflite_runtime.interpreter import Interpreter
### Tensorflow v2.2.0
interpreter = Interpreter(model_path="foo.tflite")
### Tensorflow v2.3.0+
interpreter = Interpreter(model_path="foo.tflite", num_threads=4)

Build parameter

  • git clone
    TFVER=2.12.0
    git clone -b v${TFVER} --depth 1 https://github.com/tensorflow/tensorflow.git
    cd tensorflow
  • Adjustment of Dockerfile and Header file
    sed -i -e 's/RUN yes/#RUN yes/g' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i -e 's/RUN pip3 install numpy~=1.19.2/RUN pip3 install numpy==1.24.3/g' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i '19a ENV DEBIAN_FRONTEND=noninteractive' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i '20a ENV TZ=Etc/UTC' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i '29a \      tzdata \\' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i -e 's/RUN DEBIAN_FRONTEND=noninteractive/#RUN DEBIAN_FRONTEND=noninteractive/g' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i '50a \      python-is-python3 \\' tensorflow/lite/tools/pip_package/Dockerfile.py3
    sed -i '15a #include <assert.h>' tensorflow/tsl/framework/fixedpoint/MatMatProductAVX2.h
  • Added FlexDelegate and XNNPACK as build options. If you want to keep the binary size as small as possible, change tflite_pip_with_flex and tflite_with_xnnpack to false and build. The --copt=-fpermissive option of armhf is deprecated.
    nano tensorflow/lite/tools/pip_package/build_pip_package_with_bazel.sh
    
    # Build python interpreter_wrapper.
    cd "${BUILD_DIR}"
    case "${TENSORFLOW_TARGET}" in
      armhf)
        BAZEL_FLAGS="--config=elinux_armhf
          --copt=-march=armv7-a --copt=-mfpu=neon-vfpv4
          --copt=-O3 --copt=-fno-tree-pre --copt=-fpermissive
          --define tensorflow_mkldnn_contraction_kernel=0
          --define=raspberry_pi_with_neon=true"
        ;;
      aarch64)
        BAZEL_FLAGS="--config=elinux_aarch64
          --define tensorflow_mkldnn_contraction_kernel=0
          --copt=-O3"
        ;;
      native)
        BAZEL_FLAGS="--copt=-O3 --copt=-march=native"
        ;;
      *)
        BAZEL_FLAGS="--copt=-O3"
        ;;
    esac# Build python interpreter_wrapper.
    cd "${BUILD_DIR}"
    case "${TENSORFLOW_TARGET}" in
      armhf)
        BAZEL_FLAGS="--config=elinux_armhf
          --copt=-march=armv7-a --copt=-mfpu=neon-vfpv4
          --copt=-O3 --copt=-fno-tree-pre
          --define tensorflow_mkldnn_contraction_kernel=0
          --define=raspberry_pi_with_neon=true
          --define=tflite_pip_with_flex=true
          --define=tflite_with_xnnpack=false
          --define=tflite_kernel_use_xnnpack=false
          --ui_actions_shown=20"
        ;;
      aarch64)
        BAZEL_FLAGS="--config=elinux_aarch64
          --define tensorflow_mkldnn_contraction_kernel=0
          --define=tflite_pip_with_flex=true
          --define=tflite_with_xnnpack=true
          --copt=-O3
          --ui_actions_shown=20"
        ;;
      native)
        BAZEL_FLAGS="--copt=-O3 --copt=-march=native
          --define=tflite_pip_with_flex=true
          --define=tflite_with_xnnpack=true
          --ui_actions_shown=20"
        ;;
      *)
        BAZEL_FLAGS="--copt=-O3
          --define=tflite_pip_with_flex=true
          --define=tflite_with_xnnpack=true
          --ui_actions_shown=20"
        ;;
    esac
  • Build
    cd tensorflow/lite/tools/pip_package
    
    make BASE_IMAGE=ubuntu:20.04 PYTHON=python3 PYTHON_VERSION=3.8 TENSORFLOW_TARGET=aarch64 docker-build
    make BASE_IMAGE=debian:bullseye PYTHON=python3 PYTHON_VERSION=3.9 TENSORFLOW_TARGET=aarch64 docker-build
    make BASE_IMAGE=ubuntu:22.04 PYTHON=python3 PYTHON_VERSION=3.10 TENSORFLOW_TARGET=aarch64 docker-build
    make BASE_IMAGE=debian:bookworm PYTHON=python3 PYTHON_VERSION=3.11 TENSORFLOW_TARGET=aarch64 docker-build
    
    make BASE_IMAGE=ubuntu:20.04 PYTHON=python3 PYTHON_VERSION=3.8 TENSORFLOW_TARGET=armhf docker-build
    make BASE_IMAGE=debian:bullseye PYTHON=python3 PYTHON_VERSION=3.9 TENSORFLOW_TARGET=armhf docker-build
    make BASE_IMAGE=ubuntu:22.04 PYTHON=python3 PYTHON_VERSION=3.10 TENSORFLOW_TARGET=armhf docker-build
    make BASE_IMAGE=debian:bookworm PYTHON=python3 PYTHON_VERSION=3.11 TENSORFLOW_TARGET=armhf docker-build
    
    make BASE_IMAGE=ubuntu:20.04 PYTHON=python3 PYTHON_VERSION=3.8 TENSORFLOW_TARGET=native docker-build

Operation check 【Classification】

Sample of MultiThread x4 by Tensorflow Lite [MobileNetV1 / 75ms] 01

Sample of MultiThread x4 by Tensorflow Lite [MobileNetV2 / 68ms] 02

  • Environmental preparation
$ cd ~;mkdir test
$ curl https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/lite/examples/label_image/testdata/grace_hopper.bmp -o ~/test/grace_hopper.bmp
$ curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_1.0_224_frozen.tgz | tar xzv -C ~/test mobilenet_v1_1.0_224/labels.txt
$ mv ~/test/mobilenet_v1_1.0_224/labels.txt ~/test/
$ curl http://download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224_quant.tgz | tar xzv -C ~/test
$ cd ~/test
  • label_image.py
import argparse
import numpy as np
import time

from PIL import Image

from tflite_runtime.interpreter import Interpreter

def load_labels(filename):
  my_labels = []
  input_file = open(filename, 'r')
  for l in input_file:
    my_labels.append(l.strip())
  return my_labels
if __name__ == "__main__":
  floating_model = False
  parser = argparse.ArgumentParser()
  parser.add_argument(
    "-i",
    "--image",
    default="/tmp/grace_hopper.bmp", \
    help="image to be classified"
  )
  parser.add_argument(
    "-m",
    "--model_file", \
    default="/tmp/mobilenet_v1_1.0_224_quant.tflite", \
    help=".tflite model to be executed"
  )
  parser.add_argument(
    "-l",
    "--label_file",
    default="/tmp/labels.txt", \
    help="name of file containing labels"
  )
  parser.add_argument(
    "--input_mean",
    default=127.5,
    help="input_mean"
  )
  parser.add_argument(
    "--input_std",
    default=127.5, \
    help="input standard deviation"
  )
  parser.add_argument(
    "--num_threads",
    default=1,
    help="number of threads"
  )
  args = parser.parse_args()

  interpreter = Interpreter(
    model_path="foo.tflite",
    num_threads=args.num_threads
  )
  try:
    interpreter.allocate_tensors()
  except:
    pass
  input_details = interpreter.get_input_details()
  output_details = interpreter.get_output_details()
  # check the type of the input tensor
  if input_details[0]['dtype'] == np.float32:
    floating_model = True
  # NxHxWxC, H:1, W:2
  height = input_details[0]['shape'][1]
  width = input_details[0]['shape'][2]
  img = Image.open(args.image)
  img = img.resize((width, height))
  # add N dim
  input_data = np.expand_dims(img, axis=0)
  if floating_model:
    input_data = (np.float32(input_data) - args.input_mean) / args.input_std

  interpreter.set_tensor(input_details[0]['index'], input_data)

  start_time = time.time()
  interpreter.invoke()
  stop_time = time.time()

  output_data = interpreter.get_tensor(output_details[0]['index'])
  results = np.squeeze(output_data)
  top_k = results.argsort()[-5:][::-1]
  labels = load_labels(args.label_file)
  for i in top_k:
    if floating_model:
      print('{0:08.6f}'.format(float(results[i]))+":", labels[i])
    else:
      print('{0:08.6f}'.format(float(results[i]/255.0))+":", labels[i])

  print("time: ", stop_time - start_time)
  • Inference test
$ python3 label_image.py \
--num_threads 4 \
--image grace_hopper.bmp \
--model_file mobilenet_v1_1.0_224_quant.tflite \
--label_file labels.txt

Operation check 【ObjectDetection】

Sample of MultiThread x4 by Tensorflow Lite + Raspbian Buster (armhf) + RaspberryPi3 [MobileNetV2-SSD / 160ms]

03 04

Sample of MultiThread x4 by Tensorflow Lite + Ubuntu18.04 (aarch64) + RaspberryPi3 [MobileNetV2-SSD / 140ms]

06

Inference test

$ python3 mobilenetv2ssd.py

MobileNetV2-SSD (UINT8) + Corei7 CPU only + USB Camera + 10 Threads + Async

05

MobileNetV2-SSDLite (UINT8) + RaspberryPi4 CPU only + USB Camera 640x480 + 4 Threads + Sync + Disp 1080p

07

List of quantized models

https://www.tensorflow.org/lite/guide/hosted_models

Other MobileNetV1 weight files

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

Other MobileNetV2 weight files

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md

Reference

tflite only python package PINTO0309/Tensorflow-bin#15 Incorrect predictions of Mobilenet_V2 tensorflow/tensorflow#31229 (comment)

More Repositories

1

PINTO_model_zoo

A repository for storing models that have been inter-converted between various frameworks. Supported frameworks are TensorFlow, PyTorch, ONNX, OpenVINO, TFJS, TFTRT, TensorFlowLite (Float32/16/INT8), EdgeTPU, CoreML.
Python
3,504
star
2

onnx2tf

Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf). I don't need a Star, but give me a pull request.
Python
669
star
3

OpenVINO-YoloV3

YoloV3/tiny-YoloV3+RaspberryPi3/Ubuntu LaptopPC+NCS/NCS2+USB Camera+Python+OpenVINO
Python
535
star
4

Tensorflow-bin

Prebuilt binary with Tensorflow Lite enabled. For RaspberryPi / Jetson Nano. Support for custom operations in MediaPipe. XNNPACK, XNNPACK Multi-Threads, FlexDelegate.
Shell
478
star
5

MobileNet-SSD-RealSense

[High Performance / MAX 30 FPS] RaspberryPi3(RaspberryPi/Raspbian Stretch) or Ubuntu + Multi Neural Compute Stick(NCS/NCS2) + RealSense D435(or USB Camera or PiCamera) + MobileNet-SSD(MobileNetSSD) + Background Multi-transparent(Simple multi-class segmentation) + FaceDetection + MultiGraph + MultiProcessing + MultiClustering
Python
355
star
6

openvino2tensorflow

This script converts the ONNX/OpenVINO IR model to Tensorflow's saved_model, tflite, h5, tfjs, tftrt(TensorRT), CoreML, EdgeTPU, ONNX and pb. PyTorch (NCHW) -> ONNX (NCHW) -> OpenVINO (NCHW) -> openvino2tensorflow -> Tensorflow/Keras (NHWC/NCHW) -> TFLite (NHWC/NCHW). And the conversion from .pb to saved_model and from saved_model to .pb and from .pb to .tflite and saved_model to .tflite and saved_model to onnx. Support for building environments with Docker. It is possible to directly access the host PC GUI and the camera to verify the operation. NVIDIA GPU (dGPU) support. Intel iHD GPU (iGPU) support.
Python
318
star
7

simple-onnx-processing-tools

A set of simple tools for splitting, merging, OP deletion, size compression, rewriting attributes and constants, OP generation, change opset, change to the specified input order, addition of OP, RGB to BGR conversion, change batch size, batch rename of OP, and JSON convertion for ONNX models.
Python
266
star
8

tflite2tensorflow

Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite, ONNX, OpenVINO, Myriad Inference Engine blob and .pb from .tflite. Support for building environments with Docker. It is possible to directly access the host PC GUI and the camera to verify the operation. NVIDIA GPU (dGPU) support. Intel iHD GPU (iGPU) support. Supports inverse quantization of INT8 quantization model.
Python
239
star
9

Keras-OneClassAnomalyDetection

[5 FPS - 150 FPS] Learning Deep Features for One-Class Classification (AnomalyDetection). Corresponds RaspberryPi3. Convert to Tensorflow, ONNX, Caffe, PyTorch. Implementation by Python + OpenVINO/Tensorflow Lite.
Jupyter Notebook
120
star
10

mediapipe-bin

MediaPipe Python Wheel installer for RaspberryPi OS aarch64, Ubuntu aarch64, Debian aarch64 and Jetson Nano.
Shell
113
star
11

MobileNetV2-PoseEstimation

Tensorflow based Fast Pose estimation. OpenVINO, Tensorflow Lite, NCS, NCS2 + Python.
Python
105
star
12

MobileNet-SSD

MobileNet-SSD(MobileNetSSD) + Neural Compute Stick(NCS) Faster than YoloV2 + Explosion speed by RaspberryPi · Multiple moving object detection with high accuracy.
Python
92
star
13

wsl2_linux_kernel_usbcam_enable_conf

Configuration file to build the kernel to access the USB camera connected to the host PC using USBIP from inside the WSL2 Ubuntu 20.04/22.04.
Python
88
star
14

TPU-MobilenetSSD

Edge TPU Accelerator / Multi-TPU + MobileNet-SSD v2 + Python + Async + LattePandaAlpha/RaspberryPi3/LaptopPC
Python
81
star
15

whisper-onnx-cpu

ONNX implementation of Whisper. PyTorch free.
Python
79
star
16

TensorflowLite-UNet

Implementation of UNet by Tensorflow Lite. Semantic segmentation without using GPU with RaspberryPi + Python. In order to maximize the learning efficiency of the model, this learns only the "Person" class of VOC2012. And Comparison with ENet.
Python
78
star
17

HeadPoseEstimation-WHENet-yolov4-onnx-openvino

WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L
Python
66
star
18

DMHead

Dual model head pose estimation. Fusion of SOTA models. 360° 6D HeadPose detection. All pre-processing and post-processing are fused together, allowing end-to-end processing in a single inference.
Python
65
star
19

OpenVINO-EmotionRecognition

OpenVINO+NCS2/NCS+MutiModel(FaceDetection, EmotionRecognition)+MultiStick+MultiProcess+MultiThread+USB Camera/PiCamera. RaspberryPi 3 compatible. Async.
Python
56
star
20

whisper-onnx-tensorrt

ONNX and TensorRT implementation of Whisper
Python
55
star
21

scs4onnx

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible.
Python
51
star
22

MobileNet-SSDLite-RealSense-TF

RaspberryPi3(Raspbian Stretch) + MobileNetv2-SSDLite(Tensorflow/MobileNetv2SSDLite) + RealSense D435 + Tensorflow1.11.0 + without Neural Compute Stick(NCS)
Python
51
star
23

OpenVINO-DeeplabV3

[4-5 FPS / Core m3 CPU only] [11 FPS / Core i7 CPU only] OpenVINO+DeeplabV3+LattePandaAlpha/LaptopPC. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+Tensorflow v1.11.0+OpenCV3.4.3+PIL
Python
43
star
24

hand-gesture-recognition-using-onnx

This is a hand gesture recognition program that replaces the entire MediaPipe process with ONNX. Simultaneous detection of multiple palms and a simple tracker are additionally implemented. In addition, a simple MLP can learn and recognize gestures.
Jupyter Notebook
40
star
25

TPU-Posenet

Edge TPU Accelerator / Multi-TPU / Multi-Model + Posenet/DeeplabV3/MobileNet-SSD + Python + Sync / Async + LaptopPC / RaspberryPi
Python
39
star
26

faster-whisper-env

An environment where you can try out faster-whisper immediately.
Python
36
star
27

facemesh_onnx_tensorrt

Verify that the post-processing merged into FaceMesh works correctly. The object detection model can be anything other than BlazeFace. YOLOv4 and FaceMesh committed to this repository have modified post-processing.
Python
32
star
28

yolact_edge_onnx_tensorrt_myriad

Provides a conversion flow for YOLACT_Edge to models compatible with ONNX, TensorRT, OpenVINO and Myriad (OAK). My own implementation of post-processing allows for e2e inference. Support for Multi-Class NonMaximumSuppression, CombinedNonMaxSuppression.
Python
27
star
29

crowdhuman_hollywoodhead_yolo_convert

YOLOv7 training. Generates a head-only dataset in YOLO format. The labels included in the CrowdHuman dataset are Head and FullBody, but ignore FullBody.
Python
27
star
30

simple_fisheye_calibrator

Simple GUI-based correction of fisheye images. The correction parameters specified on the screen can be diverted to opencv's fisheye correction parameters. Supports execution via Docker.
Python
26
star
31

onnx2json

Exports the ONNX file to a JSON file and JSON dict.
Python
26
star
32

tflite2json2tflite

Convert tflite to JSON and make it editable in the IDE. It also converts the edited JSON back to tflite binary.
Dockerfile
26
star
33

mtomo

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Dockerfile
24
star
34

MobileNetv2-SSDLite

My proprietary procedure. Caffe implementation of SSD and SSDLite detection on MobileNetv2, converted from tensorflow.
Python
24
star
35

Bazel_bin

Bazel's pre-built binaries for armv7l / aarch64 / x86_64.
Shell
22
star
36

BoT-SORT-ONNX-TensorRT

BoT-SORT + YOLOX implemented using only onnxruntime, Numpy and scipy, without cython_bbox and PyTorch. Fast human tracker. OSNet is not used.
Python
21
star
37

pytorch4raspberrypi

Cross-compilation of PyTorch armv7l (32bit) for RaspberryPi OS
Dockerfile
20
star
38

scc4onnx

Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.
Python
20
star
39

onnxruntime4raspberrypi

onnxruntime for RaspberryPi armv7l
19
star
40

zumo32u4

Zumo32u4(ATmega32u4) + RaspberryPi3(RaspberryPi) + SLAM(CartoGrapher/Gmapping) + RPLiDAR A1M8
Python
19
star
41

20220228_intel_deeplearning_day_hitnet_demo

Special Presentation Demo at Intel IoT Planet 2021 DeepLearning Day / インテル IoT プラネット 2021 DeepLearning Dayの特別講演の発表資料 https://www.intel.co.jp/content/www/jp/ja/now/iot-planet/deep-learning-day.html
Python
19
star
42

TensorflowLite-flexdelegate

This is a repository for checking the operation of Flex Delegate of Tensorflow.
C++
19
star
43

sit4onnx

Tools for simple inference testing using TensorRT, CUDA and OpenVINO CPU/GPU and CPU providers. Simple Inference Test for ONNX.
Python
18
star
44

spo4onnx

Simple tool for partial optimization of ONNX. Further optimize some models that cannot be optimized with onnx-optimizer and onnxsim by several tens of percent. In particular, models containing Einsum and OneHot.
Python
18
star
45

hand_landmark

HandLandmark Detection that can be performed only in onnxruntime. Pre-focusing by skeletal detection is not performed. This does not use MediaPipe.
Python
17
star
46

json2onnx

Converts a JSON file to an ONNX file.
Python
16
star
47

snc4onnx

Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.
Python
15
star
48

sio4onnx

Simple tool to change the INPUT and OUTPUT shape of ONNX.
Python
14
star
49

Open3D-build

Provide Docker build sequences of Open3D for various environments.
Dockerfile
14
star
50

gesture-drone

Drone + OpenVINO + ObjectDetection + FaceRecognition + MobileNetV2 PoseEstiation
Python
14
star
51

OpenVINO-ADAS

[1 FPS / CPU only] OpenVINO+ADAS+LattePandaAlpha. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+OpenCV3.4.3+PIL
Python
14
star
52

OpenVINO-bin

OpenVINO installer storage location (Full version)
Shell
13
star
53

sne4onnx

A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.
Python
13
star
54

jetson-tensorflow-pytorch-build

Provides an environment for compiling TensorFlow or PyTorch with CUDA for aarch64 on an x86 machine. This is for Jetson. If you build using an EC2 m6g.16xlarge (aarch64) instance, TensorFlow can be fully built in about 30 minutes. It can be used as a cross-compilation environment not only for TensorFlow and PyTorch, but also for various other packages and libraries.
Dockerfile
13
star
55

PyTorch-build

Provide Docker build sequences of PyTorch for various environments.
Dockerfile
11
star
56

Face_Mask_Augmentation

Masked Face Image Augmentation Tool for Dataset 300W-LP with 6D Head Pose Information.
Python
11
star
57

sam4onnx

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.
Python
11
star
58

DirectMHP_YOLOv7

I just replaced the DirectMHP backend from YOLOv5 to YOLOv7.
Python
10
star
59

onnx-speech-language-detection

A simple program that returns RFC5646 style language codes and country code symbols from microphone input or wav byte arrays. e.g. ja-JP, en-US, ...
Python
9
star
60

components_of_onnx

[WIP] ONNX parts yard. The various operations described in Operator Schemas are converted in advance into OP stand-alone ONNX files.
Python
8
star
61

tflite-input-output-rewriter

This tool displays tflite signatures and rewrites the input/output OP name to the name of the signature. There is no need to install TensorFlow or TFLite.
Python
8
star
62

rtspserver-ffmpeg

Build an ffmpeg RTSP distribution server using an old alpine:3.8 Docker Image.
Python
8
star
63

human-pose-estimation-3d-python-cpp

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Python
8
star
64

soc4onnx

A very simple tool that forces a change in the opset of an ONNX graph. Simple Opset Changer for ONNX.
Python
7
star
65

sbi4onnx

A very simple script that only initializes the batch size of ONNX. Simple Batchsize Initialization for ONNX.
Python
7
star
66

sog4onnx

Simple ONNX operation generator. Simple Operation Generator for ONNX.
Python
7
star
67

snd4onnx

Simple node deletion tool for onnx.
Python
7
star
68

simple_camera_capture

Very simple recording tool using only OpenCV. Automatically record the camera capture to mp4, press C key or left mouse button click captures the image.
Python
7
star
69

mmaction2-onnx-export-env

ONNX export environment for mmaction2
Dockerfile
7
star
70

RaspberryPi-bin

OS image repository for RaspberryPi3.
Shell
6
star
71

sed4onnx

Simple ONNX constant encoder/decoder. Since the constant values in the JSON files generated by onnx2json are Base64-encoded values, ASCII <-> Base64 conversion is required when rewriting JSON constant values.
Python
6
star
72

TinyYolo

Challenge the marginal performance of YoloV2 + Neural Compute Stick + RaspberryPi YoloV2+Neural Compute Stick(NCS)+Raspberry Piの限界性能に挑戦
Python
5
star
73

PINTO0309

5
star
74

sor4onnx

Simple OP Renamer for ONNX.
Python
5
star
75

OpenCVonARMv7

Deb package for introducing OpenCV to RaspberryPi3.
5
star
76

sna4onnx

Simple node addition tool for onnx. Simple Node Addition for ONNX.
Python
5
star
77

ssc4onnx

Checker with simple ONNX model structure. Simple Structure Checker for ONNX.
Python
5
star
78

realsense-cuda-opengl-docker

RealSense execution environment built on a Docker container on Ubuntu 20.04. NIVIDA GPU and OpenGL capable. CUADA 11.4.
Dockerfile
5
star
79

simple-ros2-processing-tools

A set of simple tools for ROS2 of my own making.
Python
5
star
80

300W_LP_AFLW2000_viewer

Python
4
star
81

soa4onnx

Simple model Output OP Additional tools for ONNX.
Python
4
star
82

mmrotate-exec-env

Execution environment of mmrotate
Dockerfile
3
star
83

tvm-build

TVM build and run test environment
Dockerfile
3
star
84

ssi4onnx

Simple Shape Inference tool for ONNX.
Python
3
star
85

edgetpu-bin

Prebuilt binary for EdgeTPU PythonAPI standalone installer.
3
star
86

NITEC-ONNX-TensorRT

ONNX implementation of "NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction" https://github.com/thohemp/nitec
Python
3
star
87

Human-Face-Crop-ONNX-TensorRT

Simply crop the face from the image at high speed and save.
Python
3
star
88

Maxine-env

NVIDIA Maxine - A playground for running the Audio Effects SDK.
Dockerfile
2
star
89

TBBonARMv7

RaspberryPi3へのTBB(Intel Threading Building Blocks)導入用debパッケージ保管庫
2
star
90

sod4onnx

Simple model Output OP Deletion tools for ONNX.
Python
2
star
91

sic4onnx

A very simple tool that forces a change in the IR Version of an ONNX graph. Simple IR version Changer for ONNX.
Python
2
star
92

rtspserver-v4l2

RTSP distribution server for USB camera video using v4l2 with Docker container on Ubuntu 20.04.
Python
2
star
93

YoloTrainDataGenerate

Procedures and tools for semi-mechanically automatically generating YoloV2 original learning data from video.
Python
2
star
94

rosdepth2mp4

A simple tool to record ROS2 Image topics to MP4.
Python
2
star
95

ZED2-Docker

ZED2 SDK Installed Containers
Dockerfile
2
star
96

sde4onnx

Simple doc_string eraser for ONNX.
Python
1
star
97

DeepLearningMugenKnock

Python
1
star
98

SegNet-TF

Tensorflow implementation of SegNet Tensorflow 1.11.0 + Python (I made minor bugfixes for toimcio/SegNet-tensorflow)
Jupyter Notebook
1
star
99

yolov9-wholebody25-tensorflowjs-web-test

A test environment running yolov9-wholebody25 on TensorFlow.js.
HTML
1
star
100

svs4onnx

A very simple tool to swap connections between output and input variables in an ONNX graph. Simple Variable Switch for ONNX.
Python
1
star