• Stars
    star
    113
  • Rank 310,115 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

TensorFlow Lite, Coral Edge TPU samples (Python/C++, Raspberry Pi/Windows/Linux).

TensorFlow Lite samples.

About

TensorFlow Lite samples (Python/C++, Raspberry Pi/VisionFive 2/Windows/Linux).

  • CPU(XNNPACK) inference
  • Coral Edge TPU Delegate
  • GPU Delegate

List of samples.

Name Language Description API OS
Camouflage Python Object detection and camouflage objects by PiCamera. PyCoral Linux
Windows
Classify Python Image classifilcation by PiCamera or Video Capture. TF-Lite
PyCoral
Linux
Windows
CenterNet Python
C++
CenterNet on-device with TensorFlow Lite. TF-Lite Liux
Windows
DeepLab Python
C++
Semantic Segmentation using DeepLab v3. TF-Lite
EdgeTPU API
Linux
Windows
Object detection Python
C++
VC++
Object detection by PiCamera or Video Capture. TF-Lite
PyCoral
Linux
Windows
U-Net MobileNet v2 Python Image segmentation model U-Net MobileNet v2. TF-Lite Linux
Windows
Super resolution Python Super resolution using ESRGAN. TF-Lite Linux
Windows
YOLOX Python YOLOX with TensorFlow Lite. TF-Lite Linux
Windows
DeepLab V3+ EdgeTPUV2 and AutoSeg EdgeTPU Python DeepLab V3+ EdgeTPUV2 and AutoSeg EdgeTPU with TensorFlow Lite. TF-Lite
EdgeTPU
Linux
Windows
FFNet C++ VisionFive 2 TensorFlow Lite GPU Delegate FFNet TF-Lite
GPU delegate
Linux

Images

Object detection Camouflage DeepLab
detection camouflage deeplab
Segmentation CenterNet YOLOX
segmentation centernet yolox
DeepLab V3+ EdgeTPUV2 and AutoSeg EdgeTPU VisionFive 2 TensorFlow Lite GPU Delegate
FFNet46NS CCC Mobile Pre-Down Fused-Argmax
VisionFive 2 TensorFlow Lite GPU Delegate
EfficientDet-Lite0
YouTube Link
YouTube Link
YouTube Link

Environment

  • Coral Edge TPU USB Accelerator
  • Raspberry Pi (3 B+ / 4) + PiCamera or UVC Camera
  • Dev Board
  • VisionFive 2
  • x64 PC(Windows or Linux) + Video file or UVC Camera
  • Python3

Installation

Reference