• Stars
    star
    249
  • Rank 162,987 (Top 4 %)
  • Language
    Java
  • License
    Apache License 2.0
  • Created about 8 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Score documents with pure dot product / cosine similarity with ES

Vector Scoring Plugin for Elasticsearch

Note: most of the functionality of this plugin is now supported natively in ES: https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html

Also see https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch.

This plugin is no longer maintained


This plugin allows you to score documents based on arbitrary raw vectors, using dot product or cosine similarity.

Releases

Master branch targets Elasticsearch 5.4. Note that version 5.5+ is not supported as Elasticsearch changed their plugin mechanism. An update for 5.5+ will be developed soon (PRs welcome).

Branch es-2.4 targets Elasticsearch 2.4.x

Overview

The aim of this plugin is to enable real-time scoring of vector-based models, in particular factor-based recommendation models.

In this case, user and item factor vectors are indexed using the Delimited Payload Token Filter, e.g. the vector [1.2, 0.1, 0.4, -0.2, 0.3] is indexed as a string: 0|1.2 1|0.1 2|0.4 3|-0.2 4|0.3.

This stores the vector indices as "terms" and the vector values as "payloads".

Scoring

This plugin provides a native script payload_vector_score for use in function_score queries.

The script computes the dot product between the query vector and the document vector. In pseudo-code:

for (i : vector_indices_terms) {
    payload = indexTermField(i).getPayload()
    score += payload * queryVector(i)
}

Plugin installation

Targets Elasticsearch 5.4.0 and Java 1.8.

Simple installation

ELASTIC_HOME/bin/elasticsearch-plugin install https://github.com/MLnick/elasticsearch-vector-scoring/releases/download/v5.4.0/elasticsearch-vector-scoring-5.4.0.zip

Build from source

  1. Build: mvn package
  2. Install plugin in Elasticsearch: ELASTIC_HOME/bin/elasticsearch-plugin install file:///PROJECT_HOME/target/releases/elasticsearch-vector-scoring-5.4.0.zip (stop ES first).

Start Elasticsearch: ELASTIC_HOME/bin/elasticsearch. You should see the plugin registered at Elasticsearch startup:

...
[2017-03-29T13:46:57,804][INFO ][o.e.p.PluginsService     ] [2Zs8kW3] loaded plugin [elasticsearch-vector-scoring]
...

Example usage

Below are examples illustrating basic usage. For a more complete usage example, including training a recommender model with Apache Spark, see the Elasticsearch Spark Recommender on IBM Code.

Index setup

curl -s -XPUT 'http://localhost:9200/test?pretty' -d '{
    "settings" : {
        "analysis": {
                "analyzer": {
                   "payload_analyzer": {
                      "type": "custom",
                      "tokenizer":"whitespace",
                      "filter":"delimited_payload_filter"
                    }
          }
        }
     }
}'

curl -s -XPUT 'http://localhost:9200/test/_mapping/movies?pretty' -d '
{
    "movies" : {
        "properties" : {
            "@model_factor": {
                            "type": "text",
                            "term_vector": "with_positions_offsets_payloads",
                            "analyzer" : "payload_analyzer"
                     }
        }
    }
}'

curl -s -XPUT 'http://localhost:9200/test/movies/1?pretty' -d '
{
    "@model_factor":"0|1.2 1|0.1 2|0.4 3|-0.2 4|0.3",
    "name": "Test 1"
}'

curl -s -XPUT 'http://localhost:9200/test/movies/2?pretty' -d '
{
    "@model_factor":"0|0.1 1|2.3 2|-1.6 3|0.7 4|-1.3",
    "name": "Test 2"
}'

curl -s -XPUT 'http://localhost:9200/test/movies/3?pretty' -d '
{
    "@model_factor":"0|-0.5 1|1.6 2|1.1 3|0.9 4|0.7",
    "name": "Test 3"
}'

curl -s -XGET 'http://localhost:9200/test/movies/1/_termvector?pretty' -d '
{
  "fields" : ["@model_factor"],
  "payloads" : true,
  "positions" : true
}'

Scoring example

curl -s -XPOST 'http://localhost:9200/test/movies/_search?pretty' -d '
{
    "query": {
        "function_score": {
            "query" : {
                "query_string": {
                    "query": "*"
                }
            },
            "script_score": {
                "script": {
                	"inline": "payload_vector_score",
                	"lang": "native",
                	"params": {
                    	"field": "@model_factor",
                    	"vector": [0.1,2.3,-1.6,0.7,-1.3],
                    	"cosine" : true
                    }
				}
            },
            "boost_mode": "replace"
        }
    }
}'

This query returns results sorted by cosine similarity (including the document itself). For "similar item" style recommendations, you can filter the query item from the returned results.

{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.99999994,
    "hits" : [ {
      "_index" : "test",
      "_type" : "movies",
      "_id" : "2",
      "_score" : 0.99999994,
      "_source" : {
        "@model_factor" : "0|0.1 1|2.3 2|-1.6 3|0.7 4|-1.3",
        "name" : "Test 2"
      }
    }, {
      "_index" : "test",
      "_type" : "movies",
      "_id" : "3",
      "_score" : 0.2175577,
      "_source" : {
        "@model_factor" : "0|-0.5 1|1.6 2|1.1 3|0.9 4|0.7",
        "name" : "Test 3"
      }
    }, {
      "_index" : "test",
      "_type" : "movies",
      "_id" : "1",
      "_score" : -0.19618797,
      "_source" : {
        "@model_factor" : "0|1.2 1|0.1 2|0.4 3|-0.2 4|0.3",
        "name" : "Test 1"
      }
    } ]
  }
}

TODO

  1. Tests