• Stars
    star
    640
  • Rank 70,324 (Top 2 %)
  • Language
    C++
  • License
    BSD 2-Clause "Sim...
  • Created over 5 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Real-Time 3D Semantic Reconstruction from 2D data

Kimera-Semantics

Release News

  • Dec 1st 2019: Kimera-Semantics got a complete revamp:
    • Leaner code: no more code dedicated to meshing, we fully re-use Voxblox/OpenChisel instead.
    • New fast method: an order of magnitude faster (took approx 1s before, 0.1s now) than using merged, with minimal accuracy loss for small voxels (it leverages Voxblox' fast approach): you can play with both methods by changing the parameter semantic_tsdf_integrator_type in the launch file. High-res video here.

Publications

We kindly ask to cite our paper if you find this library useful:

@InProceedings{Rosinol20icra-Kimera,
  title = {Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping},
  author = {Rosinol, Antoni and Abate, Marcus and Chang, Yun and Carlone, Luca},
  year = {2020},
  booktitle = {IEEE Intl. Conf. on Robotics and Automation (ICRA)},
  url = {https://github.com/MIT-SPARK/Kimera},
  pdf = {https://arxiv.org/pdf/1910.02490.pdf}
}

Related publications

Our work is built using Voxblox, an amazing framework to build your own 3D voxelized world:

Which was originally inspired by OpenChisel:

A related work to ours is Voxblox++ which also uses Voxblox for geometric and instance-aware segmentation, differently from our dense scene segmentation, check it out as well!:

1. Installation

A. Prerequisities

sudo apt-get install python-wstool python-catkin-tools  protobuf-compiler autoconf
# Change `melodic` below for your own ROS distro
sudo apt-get install ros-melodic-cmake-modules

B. Kimera-Semantics Installation

Using catkin:

# Setup catkin workspace
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin init
catkin config --extend /opt/ros/melodic # Change `melodic` to your ROS distro
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
catkin config --merge-devel

# Add workspace to bashrc.
echo 'source ~/catkin_ws/devel/setup.bash' >> ~/.bashrc

# Clone repo
cd ~/catkin_ws/src
git clone [email protected]:MIT-SPARK/Kimera-Semantics.git

# Install dependencies from rosinstall file using wstool
wstool init # Use unless wstool is already initialized

# Optionally add Kimera-Semantics to the rosinstall file
# wstool scrape

# For ssh:
wstool merge Kimera-Semantics/install/kimera_semantics_ssh.rosinstall
# For https:
#wstool merge Kimera-Semantics/install/kimera_semantics_https.rosinstall

# Download and update all dependencies
wstool update

Finally, compile:

# Compile code
catkin build kimera_semantics_ros

# Refresh workspace
source ~/catkin_ws/devel/setup.bash

2. Usage

First, install Kimera-Semantics, see instructions above.

In Simulation (with semantics)

  1. Download the demo rosbag (click here to download) and save it in: ./kimera_semantics_ros/rosbag/kimera_semantics_demo.bag.

  2. As a general good practice, open a new terminal and run: roscore

  3. In another terminal, launch Kimera-Semantics:

roslaunch kimera_semantics_ros kimera_semantics.launch play_bag:=true

This will launch the rosbag that was downloaded in step 0 and will launch Kimera-Semantics.

  1. In another terminal, launch rviz for visualization:
rviz -d $(rospack find kimera_semantics_ros)/rviz/kimera_semantics_gt.rviz

Note: you will need to source your catkin_ws for each new terminal unless you added the following line to your ~/.bashrc file: source ~/catkin_ws/devel/setup.bash # Change bash to the shell you use.

Note 2: you might need to check/uncheck once the Kimera Semantic 3D Mesh left pane topic in rviz to visualize the mesh.

In Euroc dataset (without semantics)

With Kimera-VIO

  1. Download a Euroc rosbag: for example V1_01_easy
  2. Install Kimera-VIO-ROS.
  3. Open a new terminal, run: roscore
  4. In another terminal, launch Kimera-VIO-ROS:
roslaunch kimera_vio_ros kimera_vio_ros_euroc.launch run_stereo_dense:=true

The flag run_stereo_dense:=true will do stereo dense reconstruction (using OpenCV's StereoBM algorithm).

  1. In another terminal, launch Kimera-Semantics:
roslaunch kimera_semantics_ros kimera_semantics_euroc.launch
  1. In yet another terminal, run the Euroc rosbag downloaded in step 0:
rosbag play V1_01_easy.bag --clock

Note 1: Don't forget the --clock flag!

Note 2: Kimera is so fast that you could also increase the rosbag rate by 3 --rate 3 and still see a good performance (results depend on available compute power).

  1. Finally, in another terminal, run Rviz for visualization:
rviz -d $(rospack find kimera_semantics_ros)/rviz/kimera_semantics_euroc.rviz

3. FAQ

  • Minkindr doesn't compile:

    Catkin ignore the minkindr_python catkin package: touch ~/catkin_ws/src/minkindr/minkindr_python/CATKIN_IGNORE

  • How to run Kimera-Semantics without Semantics?

    We are using Voxblox as our 3D reconstruction library, therefore, to run without semantics, simply do:

    roslaunch kimera_semantics_ros kimera_semantics.launch play_bag:=true metric_semantic_reconstruction:=false
  • How to enable Dense Depth Stereo estimation

This will run OpenCV's StereoBM algorithm, more info can be found here (also checkout this to choose good parameters):

roslaunch kimera_semantics_ros kimera_semantics.launch run_stereo_dense:=1

This will publish a /points2 topic, which you can visualize in Rviz as a 3D pointcloud. Alternatively, if you want to visualize the depth image, since Rviz does not provide a plugin to visualize a disparity image, we also run a disparity_image_proc nodelet that will publish the depth image to /depth_image.

More Repositories

1

Kimera

Index repo for Kimera code
1,800
star
2

TEASER-plusplus

A fast and robust point cloud registration library
C++
1,753
star
3

Kimera-VIO

Visual Inertial Odometry with SLAM capabilities and 3D Mesh generation.
C++
1,534
star
4

Hydra

C++
583
star
5

Kimera-RPGO

Robust Pose Graph Optimization
C++
468
star
6

Kimera-VIO-ROS

ROS wrapper for Kimera-VIO
C++
371
star
7

Kimera-Multi

Index repo for Kimera-Multi system
Shell
327
star
8

Khronos

Spatio-Temporal Metric-Semantic SLAM
C++
273
star
9

Loc-NeRF

Monte Carlo Localization using Neural Radiance Fields
Python
259
star
10

Kimera-Multi-Data

A large-scale multi-robot dataset for multi-robot SLAM
149
star
11

GNC-and-ADAPT

Graduated Non-Convexity (GNC) and Adaptive Trimming (ADAPT) algorithms for outlier robust estimation
MATLAB
112
star
12

CertifiablyRobustPerception

Certifiable Outlier-Robust Geometric Perception
MATLAB
107
star
13

PD-MeshNet

Primal-Dual Mesh Convolutional Neural Networks
Python
106
star
14

GlobalOptimizationTutorial

Hands-on Tutorial for Global Optimization in Matlab
MATLAB
104
star
15

llm_scene_understanding

HTML
71
star
16

STRIDE

Solver for Large-Scale Rank-One Semidefinite Relaxations
MATLAB
66
star
17

Clio

66
star
18

VNAV-labs

Labs for MIT 16.485
Python
64
star
19

Spatial-Hash

Minimal C++ library for spatial data structures based on voxel hashing
C++
57
star
20

KISS-Matcher

52
star
21

Hydra-ROS

Hydra ROS Interface
C++
39
star
22

Spark-DSG

Scene Graph API (C++ and Python)
C++
37
star
23

Kimera-VIO-ROS2

C++
36
star
24

Kimera-Multi-LCD

C++
34
star
25

Kimera-VIO-Evaluation

Code to automatically evaluate and tune parameters for Kimera-VIO pipeline.
Python
33
star
26

Kimera-PGMO

C++
33
star
27

ROBIN

C++
31
star
28

config_utilities

Automatic C++ config structs and tools.
C++
28
star
29

pose_graph_tools

C++
26
star
30

pose-baselines

Jupyter Notebook
25
star
31

estimation-contracts

MATLAB
25
star
32

neural_tree

Python
22
star
33

C-3PO

Python
21
star
34

Kimera-Distributed

C++
21
star
35

MiDiffusion

Python
17
star
36

LP2

Long-term Human Trajectory Prediction using 3D DSGs
15
star
37

GlobalOptimization-ICCV2019

ICCV 2019 Tutorial: Global Optimization for Geometric Understanding with Provable Guarantees
TeX
14
star
38

FUSES

C++
11
star
39

Hydra-GNN

Room classification network training and inference code
Python
10
star
40

certifiable_tracking

MATLAB
8
star
41

PACE

Index repo for the PACE project
Python
7
star
42

robotRepresentations-RSS2023

Robot Representations Workshop @ RSS 2023
SCSS
6
star
43

ensemble_pose

Self-training for an ensemble of object pose estimators
Python
5
star
44

ford-paper-params

Parameters for competitor pipelines for the Kimera Multicamera project
5
star
45

CertifiablePerception-RSS2020

Workshop website on Certifiable Robot Perception for RSS2020
TeX
5
star
46

Longterm-Perception-WS

Workshop on Long-term Perception for Autonomy in Dynamic Human-shared Environments
SCSS
4
star
47

ThreedFront

Python
4
star
48

PerceptionMonitoring

Python
3
star
49

dbow2_catkin

CMake
2
star
50

PAL-ICRA2020

Ruby
2
star
51

kimera-multi-vocab

Vocabulary file for Kimera-Multi in the Kimera-Multi dataset
2
star
52

VNAV2020-handouts

Handouts/webpage for VNAV 2020
HTML
1
star