• Stars
    star
    419
  • Rank 103,397 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 7 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

News

  • 8 April 2019: We re-implement these GANs by Tensorflow 2! The old version is here: v1 or in the "v1" directory.
  • PyTorch Version


GANs - Tensorflow 2

Tensorflow 2 implementations of DCGAN, LSGAN, WGAN-GP and DRAGAN.

Exemplar results

Fashion-MNIST

DCGAN LSGAN WGAN-GP DRAGAN

CelebA

DCGAN LSGAN
WGAN-GP DRAGAN

Anime

WGAN-GP DRAGAN

Usage

  • Environment

    • Python 3.6

    • TensorFlow 2.2, TensorFlow Addons 0.10.0

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the TensorFlow 2.2 environment with commands below

      conda create -n tensorflow-2.2 python=3.6
      
      source activate tensorflow-2.2
      
      conda install scikit-image tqdm tensorflow-gpu=2.2
      
      conda install -c conda-forge oyaml
      
      pip install tensorflow-addons==0.10.0
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate tensorflow-2.2
  • Datasets

  • Examples of training

    • Fashion-MNIST DCGAN

      CUDA_VISIBLE_DEVICES=0 python train.py --dataset=fashion_mnist --epoch=25 --adversarial_loss_mode=gan
    • CelebA DRAGAN

      CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=25 --adversarial_loss_mode=gan --gradient_penalty_mode=dragan
    • Anime WGAN-GP

      CUDA_VISIBLE_DEVICES=0 python train.py --dataset=anime --epoch=200 --adversarial_loss_mode=wgan --gradient_penalty_mode=wgan-gp --n_d=5
    • see more training exampls in commands.sh

    • tensorboard for loss visualization

      tensorboard --logdir ./output/fashion_mnist_gan/summaries --port 6006