• Stars
    star
    189
  • Rank 204,649 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Traffic data processing tools in LibCity

Dataset in LibCity

This repository is used to introduce the dataset in LibCity.

Dataset Conversion Tools

The dataset used in LibCity is stored in a unified data storage format named atomic files. In order to directly use the datasets we collected in LibCity, we have converted all datasets into the format of atomic files, and provide the conversion tools in this repository.

All conversion tools take the original dataset in the ./input/ directory as input, and output the converted atomic files to the ./output/ directory. In addition, we provide a link to obtain the original dataset in the first line of each conversion tool. You can download the original dataset through this link and place it in the ./input/ directory. Imitating our conversion tools, you can easily convert your own traffic dataset to adapt it to LibCity.

Besides, you can simply download the datasets we have processed, the data link is BaiduDisk with code 1231 or Google Drive.

Dataset Statistics Infomation

Here we present the statistics of the datasets we have processed.

Traffic State Datasets-Point-based Flow or Speed or Occupancy

Collected from sensors or Pre-processed from trajectory data.

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
METR_LA 207 11,753 β€” 7,094,304 Los Angeles, USA Mar. 1, 2012 - Jun. 27, 2012 5min
LOS_LOOP 207 42,849 β€” 7,094,304 Los Angeles, USA Mar. 1, 2012 - Jun. 27, 2012 5min
LOS_LOOP_SMALL 207 42,849 β€” 417,312 Los Angeles, USA May. 1, 2012 - May. 5, 2012 5min
SZ_TAXI 156 24,336 β€” 464,256 Shenzhen, China Jan. 1, 2015 - Jan. 31, 2015 15min
LOOP_SEATTLE 323 104,329 β€” 33,953,760 Greater Seattle Area, USA over the entirely of 2015 5min
Q_TRAFFIC 45,148 63,422 β€” 264,386,688 Beijing, China Apr. 1, 2017 - May 31, 2017 15min
PEMSD3 358 547 β€” 9,382,464 California, USA Sept. 1, 2018 - Nov. 30, 2018 5min
PEMSD4 307 340 β€” 5,216,544 San Francisco Bay Area, USA Jan. 1, 2018 - Feb. 28, 2018 5min
PEMSD7 883 866 β€” 24,921,792 California, USA May. 1, 2017 - Aug. 31, 2017 5min
PEMSD8 170 277 β€” 3,035,520 San Bernardino Area, USA Jul. 1, 2016 - Aug. 31, 2016 5min
PEMSD7(M) 228 51,984 β€” 2,889,216 California, USA weekdays of May and June, 2012 5min
PEMS_BAY 325 8,358 β€” 16,937,700 San Francisco Bay Area, USA Jan. 1, 2017 - Jun. 30, 2017 5min
BEIJING_SUBWAY 276 76,176 β€” 248,400 Beijing, China Feb. 29, 2016 - Apr. 3, 2016 30min
M_DENSE 30 β€” β€” 525,600 Madrid, Spain Jan. 1, 2018 - Dec. 21, 2019 60min
ROTTERDAM 208 β€” β€” 4,813,536 Rotterdam, Holland 135 days of 2018 2min
SHMETRO 288 82,944 β€” 1,934,208 Shanghai, China Jul. 1, 2016 - Sept. 30, 2016 15min
HZMETRO 80 6,400 β€” 146,000 Hangzhou, China Jan. 1, 2019 - Jan. 25, 2019 15min
NYCTAXI202001-202003_DYNA 263 69,169 β€” 574,392 New York, USA Jan. 1, 2020 - Mar. 30, 2020 60min

Traffic State Datasets-Grid-based In-Flow and Out-Flow

Pre-processed from trajectory data.

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
TAXIBJ 32*32 β€” β€” 5,652,480 Beijing, China Mar. 1, 2015 - Jun. 30, 2015 et al. 30min
T_DRIVE20150206 32*32 1,048,576 β€” 3,686,400 Beijing, China Feb. 1, 2015 - Jun. 30, 2015 60min
T_DRIVE_SMALL 32*32 β€” β€” 172,032 Beijing, China Feb. 2, 2008 - Feb. 8, 2008 60min
NYCTAXI201401-201403_GRID 10*20 β€” β€” 432,000 New York, USA Jan. 1, 2014 - Mar. 31, 2014 60min
NYCBIKE202007-202009 10*20 β€” β€” 441,600 New York, USA Jul. 1, 2020 - Sept. 30, 2020 60min
PORTO201307-201309 20*10 β€” β€” 441,600 Porto, Portugal Jul. 1, 2013 - Sept. 30, 2013 60min
AUSTINRIDE20160701-20160930 16*8 β€” β€” 282,624 Austin, USA Jul. 1, 2016 - Sept. 30, 2016 60min
BIKEDC202007-202009 16*8 β€” β€” 282,624 Washington, USA Jul. 1, 2020 - Sept. 30, 2020 60min
BIKECHI202007-202009-3600 15*18 β€” β€” 596,160 Chicago, USA Jul. 1, 2020 - Sept. 30, 2020 60min
BIKECHI202007-202009 15*18 β€” β€” 1,192,320 Chicago, USA Jul. 1, 2020 - Sept. 30, 2020 30min
NYCTaxi20140112 15*5 β€” β€” 1,314,000 New York, USA Jan. 1, 2014 - Dec. 31, 2014 30min
NYCTaxi20150103 10*20 β€” β€” 576,000 New York, USA Jan. 1, 2015 - Mar. 1, 2015 30min
NYCTaxi20160102 16*12 β€” β€” 552,960 New York, USA Jan. 1, 2016 - Feb. 29, 2016 30min
NYCBike20140409 16*8 β€” β€” 562,176 New York, USA Apr. 1, 2014 - Sept. 30, 2014 60min
NYCBike20160708 10*20 β€” β€” 576,000 New York, USA Jul. 1, 2016 - Aug. 29, 2016 30min
NYCBike20160809 14*8 β€” β€” 322,560 New York, USA Aug. 1, 2016 - Sept. 29, 2016 30min

Traffic State Datasets-OD-based Flow

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
NYCTAXI202004-202006_OD 263 69,169 β€” 150,995,927 New York, USA Apr. 1, 2020 - Jun. 30, 2020 60min

Traffic State Datasets-Grid-OD-based Flow

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
NYC_TOD 15*5 β€” β€” 98,550,000 New York, USA β€” β€”

Traffic State Datasets-Risk

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
NYC_RISK 243 59049 β€” 3504000 New York, USA Jan. 01, 2013 - Dec. 31, 2013 60min
CHICAGO_RISK 197 38809 β€” 2332800 Chicago, USA Feb. 01, 2016 - Sep. 30, 2016 60min

GPS Point Trajectory Datasets

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
Chengdu_Taxi_Sample1 β€” β€” 4565 712360 Chengdu, China Aug. 03, 2014 - Aug. 30, 2014 β€”
Beijing_Taxi_Sample 16384 β€” 76 518424 Beijing, China Oct. 01, 2013 - Oct. 31, 2013 β€”
Seattle 613645 857406 1 7531 Seattle WA, USA Jan.17,2009 20:27:37 - 22:34:28 1s
Global 11045 18196 1 2502 Neftekamsk, Republic of Bashkortostan, Russian Federation β€” 1s

Road Segment-based Trajectory Datasets

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL

POI-based Trajectory Datasets

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
Foursquare_TKY 61,858 β€” 2,293 573,703 Tokyo, Japan Apr. 4, 2012 - Feb. 16, 2013 β€”
Foursquare_NYC 38,333 β€” 1,083 227,428 New York, USA Apr. 3, 2012 - Feb. 15, 2013 β€”
Gowalla 1,280,969 913,660 107,092 6,442,892 Global Feb. 4, 2009 - Oct. 23, 2010 β€”
BrightKite 772,966 394,334 51,406 4,747,287 Global Mar. 21, 2008 - Oct. 18, 2010 β€”
Instagram 13,187 β€” 78,233 2,205,794 New York, USA Jun. 15, 2011 - Nov. 8, 2016 β€”

Road Network Datasets

DATASET #GEO #REL #USR #DYNA PLACE DURATION INTERVAL
bj_roadmap_edge 38027 95660 β€” β€” Beijing, China β€” β€”
bj_roadmap_node 16927 38027 β€” β€” Beijing, China β€” β€”

Note:

  • NYCTAXI_DYNA is a dataset that counts the inflow and outflow of the region with an irregular area division method.
  • NYCTAXI_OD is a dataset that counts the origin-destination flow between regions with an irregular area division method.
  • NYCTAXI_GRID is a dataset that counts the inflow and outflow of the region with a grid-base division method.
  • NYC_TOD is a dataset that counts the origin-destination flow between regions with a grid-base division method.

Cite

Our paper is accepted by ACM SIGSPATIAL 2021. If you find LibCity useful for your research or development, please cite our paper.

@inproceedings{10.1145/3474717.3483923,
  author = {Wang, Jingyuan and Jiang, Jiawei and Jiang, Wenjun and Li, Chao and Zhao, Wayne Xin},
  title = {LibCity: An Open Library for Traffic Prediction},
  year = {2021},
  isbn = {9781450386647},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  url = {https://doi.org/10.1145/3474717.3483923},
  doi = {10.1145/3474717.3483923},
  booktitle = {Proceedings of the 29th International Conference on Advances in Geographic Information Systems},
  pages = {145–148},
  numpages = {4},
  keywords = {Spatial-temporal System, Reproducibility, Traffic Prediction},
  location = {Beijing, China},
  series = {SIGSPATIAL '21}
}
Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chao Li, and Wayne Xin Zhao. 2021. LibCity: An Open Library for Traffic Prediction. In Proceedings of the 29th International Conference on Advances in Geographic Information Systems (SIGSPATIAL '21). Association for Computing Machinery, New York, NY, USA, 145–148. DOI:https://doi.org/10.1145/3474717.3483923

04/27/2023 Update: We published a long paper on LibCity, including (1) classification and base units of urban spatial-temporal data and proposed a unified storage format, i.e., atomic files, (2) a detailed review of urban spatial-temporal prediction field (including macro-group prediction, micro-individual prediction, and fundamental tasks), (3) proposed LibCity, an open source library for urban spatial-temporal prediction, detailing each module and use cases, and providing a web-based experiment management and visualization platform, (4) selected more than 20 models and datasets for comparison experiments based on LibCity, obtained model performance rankings and summarized promising future research directions. Please check this link for more details.

For the long paper, please cite it as follows:

@article{libcitylong,
  title={Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction: A Unified Library and Performance Benchmark}, 
  author={Jingyuan Wang and Jiawei Jiang and Wenjun Jiang and Chengkai Han and Wayne Xin Zhao},
  journal={arXiv preprint arXiv:2304.14343},
  year={2023}
}