• Stars
    star
    2,205
  • Rank 20,926 (Top 0.5 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 8 years ago
  • Updated about 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pre-trained word vectors of 30+ languages

Pre-trained word vectors of 30+ languages

This project has two purposes. First of all, I'd like to share some of my experience in nlp tasks such as segmentation or word vectors. The other, which is more important, is that probably some people are searching for pre-trained word vector models for non-English languages. Alas! English has gained much more attention than any other languages has done. Check this to see how easily you can get a variety of pre-trained English word vectors without efforts. I think it's time to turn our eyes to a multi language version of this.

Nearing the end of the work, I happened to know that there is already a similar job named polyglot. I strongly encourage you to check this great project. How embarrassing! Nevertheless, I decided to open this project. You will know that my job has its own flavor, after all.

Requirements

  • nltk >= 1.11.1
  • regex >= 2016.6.24
  • lxml >= 3.3.3
  • numpy >= 1.11.2
  • konlpy >= 0.4.4 (Only for Korean)
  • mecab (Only for Japanese)
  • pythai >= 0.1.3 (Only for Thai)
  • pyvi >= 0.0.7.2 (Only for Vietnamese)
  • jieba >= 0.38 (Only for Chinese)
  • gensim > =0.13.1 (for Word2Vec)
  • fastText (for fasttext)

Background / References

  • Check this to know what word embedding is.
  • Check this to quickly get a picture of Word2vec.
  • Check this to install fastText.
  • Watch this to really understand what's happening under the hood of Word2vec.
  • Go get various English word vectors here if needed.

Work Flow

  • STEP 1. Download the wikipedia database backup dumps of the language you want.
  • STEP 2. Extract running texts to data/ folder.
  • STEP 3. Run build_corpus.py.
  • STEP 4-1. Run make_wordvector.sh to get Word2Vec word vectors.
  • STEP 4-2. Run fasttext.sh to get fastText word vectors.

Pre-trained models

Two types of pre-trained models are provided. w and f represent word2vec and fastText respectively.

Language ISO 639-1 Vector Size Corpus Size Vocabulary Size
Bengali (w) | Bengali (f) bn 300 147M 10059
Catalan (w) | Catalan (f) ca 300 967M 50013
Chinese (w) | Chinese (f) zh 300 1G 50101
Danish (w) | Danish (f) da 300 295M 30134
Dutch (w) | Dutch (f) nl 300 1G 50160
Esperanto (w) | Esperanto (f) eo 300 1G 50597
Finnish (w) | Finnish (f) fi 300 467M 30029
French (w) | French (f) fr 300 1G 50130
German (w) | German (f) de 300 1G 50006
Hindi (w) | Hindi (f) hi 300 323M 30393
Hungarian (w) | Hungarian (f) hu 300 692M 40122
Indonesian (w) | Indonesian (f) id 300 402M 30048
Italian (w) | Italian (f) it 300 1G 50031
Japanese (w) | Japanese (f) ja 300 1G 50108
Javanese (w) | Javanese (f) jv 100 31M 10019
Korean (w) | Korean (f) ko 200 339M 30185
Malay (w) | Malay (f) ms 100 173M 10010
Norwegian (w) | Norwegian (f) no 300 1G 50209
Norwegian Nynorsk (w) | Norwegian Nynorsk (f) nn 100 114M 10036
Polish (w) | Polish (f) pl 300 1G 50035
Portuguese (w) | Portuguese (f) pt 300 1G 50246
Russian (w) | Russian (f) ru 300 1G 50102
Spanish (w) | Spanish (f) es 300 1G 50003
Swahili (w) | Swahili (f) sw 100 24M 10222
Swedish (w) | Swedish (f) sv 300 1G 50052
Tagalog (w) | Tagalog (f) tl 100 38M 10068
Thai (w) | Thai (f) th 300 696M 30225
Turkish (w) | Turkish (f) tr 200 370M 30036
Vietnamese (w) | Vietnamese (f) vi 100 74M 10087

More Repositories

1

transformer

A TensorFlow Implementation of the Transformer: Attention Is All You Need
Python
4,237
star
2

nlp_tasks

Natural Language Processing Tasks and References
3,017
star
3

tacotron

A TensorFlow Implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model
Python
1,827
star
4

numpy_exercises

Numpy exercises.
Python
1,687
star
5

dc_tts

A TensorFlow Implementation of DC-TTS: yet another text-to-speech model
Python
1,159
star
6

sudoku

Can Neural Networks Crack Sudoku?
Python
823
star
7

g2p

g2p: English Grapheme To Phoneme Conversion
Python
783
star
8

tensorflow-exercises

TensorFlow Exercises - focusing on the comparison with NumPy.
Python
535
star
9

css10

CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages
HTML
457
star
10

deepvoice3

Tensorflow Implementation of Deep Voice 3
Python
452
star
11

neural_chinese_transliterator

Can CNNs transliterate Pinyin into Chinese characters correctly?
Python
334
star
12

pytorch_exercises

Jupyter Notebook
313
star
13

bert_ner

Ner with Bert
Python
281
star
14

nlp_made_easy

Explains nlp building blocks in a simple manner.
Jupyter Notebook
251
star
15

word_prediction

Word Prediction using Convolutional Neural Networks
Python
251
star
16

g2pC

g2pC: A Context-aware Grapheme-to-Phoneme Conversion module for Chinese
Python
235
star
17

g2pK

g2pK: g2p module for Korean
Python
230
star
18

expressive_tacotron

Tensorflow Implementation of Expressive Tacotron
Python
198
star
19

speaker_adapted_tts

Making a TTS model with 1 minute of speech samples within 10 minutes
184
star
20

neural_japanese_transliterator

Can neural networks transliterate Romaji into Japanese correctly?
Python
173
star
21

tacotron_asr

Speech Recognition Using Tacotron
Python
165
star
22

quasi-rnn

Character-level Neural Translation using Quasi-RNNs
Python
134
star
23

label_smoothing

Corrupted labels and label smoothing
Jupyter Notebook
128
star
24

name2nat

name2nat: a Python package for nationality prediction from a name
Python
98
star
25

bert-token-embeddings

Jupyter Notebook
97
star
26

cross_vc

Cross-lingual Voice Conversion
Python
95
star
27

mtp

Multi-lingual Text Processing
95
star
28

pron_dictionaries

pronunciation dictionaries for multiple languages
Python
83
star
29

msg_reply

a simple message reply suggestion system
Python
79
star
30

word_ordering

Can neural networks order a scramble of words correctly?
Python
73
star
31

kss

Python
71
star
32

neural_tokenizer

Tokenize English sentences using neural networks.
Python
64
star
33

bytenet_translation

A TensorFlow Implementation of Machine Translation In Neural Machine Translation in Linear Time
Python
60
star
34

KoParadigm

KoParadigm: Korean Inflectional Paradigm Generator
Python
54
star
35

specAugment

Tensor2tensor experiment with SpecAugment
Python
47
star
36

vq-vae

A Tensorflow Implementation of VQ-VAE Speaker Conversion
Python
43
star
37

lm_finetuning

Language Model Fine-tuning for Moby Dick
Python
42
star
38

texture_generation

An Implementation of 'Texture Synthesis Using Convolutional Neural Networks' with Kylberg Texture Dataset
Python
33
star
39

cjk_trans

Pre-trained Machine Translation Models of Korean from/to ECJ
29
star
40

h2h_converter

Convert Sino-Korean words written in Hangul to Chinese characters, which is called hanja in Korean, using neural networks
Python
28
star
41

integer_sequence_learning

RNN Approaches to Integer Sequence Learning--the famous Kaggle competition
Python
27
star
42

up_and_running_with_Tensorflow

A simple tutorial of TensorFlow + TensorFlow / NumPy exercises
Jupyter Notebook
13
star
43

neurobind

Yet Another Model Using Neural Networks for Predicting Binding Preferences of for Test DNA Sequences
Python
11
star
44

kollocate

Collocation Search of Korean
Python
10
star
45

kyubyong

9
star
46

WhereAmI

Where Am I? - If you want to meet me.
5
star
47

spam_detection

Spam Dectection Under Semi-supervised settings
5
star
48

helo_word

A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
Python
2
star