There are no reviews yet. Be the first to send feedback to the community and the maintainers!
Random-Forest---Digits-Datasets
Complete working of Random Forest - Digits DatasetsIPL_Teams_2020_Prediction
IPL_Teams_2020_PredictionLinear-Regression
Linear Regression workingFeature-Engineering-Methods-for-Text-columns-
Feature-Engineering Methods for Text columns done with CountVectorizer and TF-IDF MethodLogistic-Regression
Pima- Kaggle DatasetIsis-Dataset-Streamlit-Deployment
Here We Build simple Web-application using Streamlitkarthiavenger45
Tkintercalc
windows replica calculatorK-Nearest-Neighbors--Basic
Types-Of-sklearn.preprocessing-methods
Here We worked with various Preprocessing - MethodsLinearRegression
Steps-for-linearRegression
SVM-support-vector-Model
SVM-support vector Model Using Titanic DatasetsDates-and-Time-Series-Data
Working with Dates and Time Series DataAdaBoostRegressor
Time_Series_Basic
Logistic-Regression-
Air-Quality-Index-Prediction
Python-Class
Correlation_Based_Recommendation
Correlation_Based_RecommendationARIMA-model
K--Means-Clustering-The-Sparks-Foundation-Task-2
Linear-regression-The-Sparks-Foundation---Task-1
Prediction using Supervised ML-simple linear regression taskDecision-Tree-Algorithm--The-Sparks-Foundation-Task-3
Uber-Analysis
Advance-House-Price-Prediction
GDP-Analysis
Deep-Learning-with-TensorFlow
Practice model - TensorFlow - RegressionFlask-in-Google-Colab
Creating Run Flask in Google ColabLove Open Source and this site? Check out how you can help us