• Stars
    star
    133
  • Rank 272,600 (Top 6 %)
  • Language
    Python
  • Created almost 6 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Unofficial Implementation of "Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks" in CVPR 2018.

CinCGAN-pytorch

This repository is a PyTorch version of the paper "Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks" from CVPRW 2018.

For super-resolution setting I refer to EDSR (PyTorch) (you can download pretrained EDSR from here)

This version is not good looking yet. It will be updated later..


Train

  • Dataset

    Download DIV2K dataset (NTIRE2018) from here. 800 training (800) & 100 validation images (801900)

  • Pretrained EDSR network.

    Download pretrained EDSR from here

  • Execution

    After move to 'code' folder, type the following command.

     python main.py --dir_data 'data_path'

    data_path directory should contains 'DIV2K' dataset folder.

Test

  • Execution

    After move to 'code' folder, type the following command.

     python main.py --n_val 100