• Stars
    star
    190
  • Rank 203,739 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

JDet is an object detection benchmark based on Jittor. Mainly focus on aerial image object detection (oriented object detection).

JDet

Introduction

JDet is an object detection benchmark based on Jittor, and mainly focus on aerial image object detection (oriented object detection).

Install

JDet environment requirements:

  • System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
  • Python version >= 3.7
  • CPU compiler (require at least one of the following)
    • g++ (>=5.4.0)
    • clang (>=8.0)
  • GPU compiler (optional)
    • nvcc (>=10.0 for g++ or >=10.2 for clang)
  • GPU library: cudnn-dev (recommend tar file installation, reference link)

Step 1: Install the requirements

git clone https://github.com/Jittor/JDet
cd JDet
python -m pip install -r requirements.txt

If you have any installation problems for Jittor, please refer to Jittor

Step 2: Install JDet

cd JDet
# suggest this 
python setup.py develop
# or
python setup.py install

If you don't have permission for install,please add --user.

Or use PYTHONPATH: You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JDet/python into .bashrc, and run

source .bashrc

Getting Started

Datasets

The following datasets are supported in JDet, please check the corresponding document before use.

DOTA1.0/DOTA1.5/DOTA2.0 Dataset: dota.md.

FAIR Dataset: fair.md

SSDD/SSDD+: ssdd.md

You can also build your own dataset by convert your datas to DOTA format.

Config

JDet defines the used model, dataset and training/testing method by config-file, please check the config.md to learn how it works.

Train

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=train

Test

If you want to test the downloaded trained models, please set resume_path={you_checkpointspath} in the last line of the config file.

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=test

Test on images / Visualization

You can test and visualize results on your own image sets by:

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=vis_test

You can choose the visualization style you prefer, for more details about visualization, please refer to visualization.md. Visualization

Build a New Project

In this section, we will introduce how to build a new project(model) with JDet. We need to install JDet first, and build a new project by:

mkdir $PROJECT_PATH$
cd $PROJECT_PATH$
cp $JDet_PATH$/tools/run_net.py ./
mkdir configs

Then we can build and edit configs/base.py like $JDet_PATH$/configs/retinanet.py. If we need to use a new layer, we can define this layer at $PROJECT_PATH$/layers.py and import layers.py in $PROJECT_PATH$/run_net.py, then we can use this layer in config files. Then we can train/test this model by:

python run_net.py --config-file=configs/base.py --task=train
python run_net.py --config-file=configs/base.py --task=test

Models

Models Dataset Sub_Image_Size/Overlap Train Aug Test Aug Optim Lr schd mAP Paper Config Download
S2ANet-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 74.11 arxiv config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip+ra90+bc - SGD 1x 76.40 arxiv config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip+ra90+bc+ms ms SGD 1x 79.72 arxiv config model
S2ANet-R101-FPN DOTA1.0 1024/200 Flip - SGD 1x 74.28 arxiv config model
Gliding-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 72.93 arxiv config model
Gliding-R50-FPN DOTA1.0 1024/200 Flip+ra90+bc - SGD 1x 74.93 arxiv config model
H2RBox-R50-FPN DOTA1.0 1024/200 flip - AdamW 1x 67.62 arxiv config model
RetinaNet-hbb-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.02 arxiv config model
RetinaNet-obb-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.07 arxiv config model
GWD-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.88 arxiv config model
KLD-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 69.10 arxiv config model
KFIoU-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 69.36 arxiv config model
FasterRCNN-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 69.631 arxiv config model
RoITransformer-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 73.842 arxiv config model
FCOS-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 70.40 ICCV19 config model
OrientedRCNN-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 75.62 ICCV21 config model
ReDet-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 76.23 arxiv config model pretrained
CSL-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 67.99 arxiv config model
RSDet-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 68.41 arxiv config model
ATSS-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 72.44 arxiv config model
Reppoints-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 56.34 arxiv config model

Notice:

  1. ms: multiscale
  2. flip: random flip
  3. ra: rotate aug
  4. ra90: rotate aug with angle 90,180,270
  5. 1x : 12 epochs
  6. bc: balance category
  7. mAP: mean Average Precision on DOTA1.0 test set

Plan of Models

โœ”๏ธSupported ๐Ÿ•’Doing โž•TODO

  • โœ”๏ธ S2ANet
  • โœ”๏ธ Gliding
  • โœ”๏ธ RetinaNet
  • โœ”๏ธ Rotated RetinaNet
  • โœ”๏ธ Faster R-CNN
  • โœ”๏ธ SSD
  • โœ”๏ธ ROI Transformer
  • โœ”๏ธ FCOS
  • โœ”๏ธ Oriented R-CNN
  • โœ”๏ธ YOLOv5
  • โœ”๏ธ GWD
  • โœ”๏ธ KLD
  • โœ”๏ธ H2RBox
  • โœ”๏ธ KFIoU
  • โœ”๏ธ Localization Distillation
  • โœ”๏ธ ReDet
  • โœ”๏ธ CSL
  • โœ”๏ธ Reppoints
  • โœ”๏ธ RSDet
  • โœ”๏ธ ATSS
  • ๐Ÿ•’ R3Det
  • ๐Ÿ•’ Cascade R-CNN
  • ๐Ÿ•’ Oriented Reppoints
  • โž• DCL
  • โž• Double Head OBB
  • โž• Guided Anchoring
  • โž• ...

Plan of Datasets

โœ”๏ธSupported ๐Ÿ•’Doing โž•TODO

  • โœ”๏ธ DOTA1.0
  • โœ”๏ธ DOTA1.5
  • โœ”๏ธ DOTA2.0
  • โœ”๏ธ SSDD
  • โœ”๏ธ SSDD+
  • โœ”๏ธ FAIR
  • โœ”๏ธ COCO
  • โž• LS-SSDD
  • โž• DIOR-R
  • โž• HRSC2016
  • โž• ICDAR2015
  • โž• ICDAR2017 MLT
  • โž• UCAS-AOD
  • โž• FDDB
  • โž• OHD-SJTU
  • โž• MSRA-TD500
  • โž• Total-Text
  • โž• ...

Contact Us

Website: http://cg.cs.tsinghua.edu.cn/jittor/

Email: [email protected]

File an issue: https://github.com/Jittor/jittor/issues

QQ Group: 761222083

The Team

JDet is currently maintained by the Tsinghua CSCG Group. If you are also interested in JDet and want to improve it, Please join us!

Citation

@article{hu2020jittor,
  title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
  author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
  journal={Science China Information Sciences},
  volume={63},
  number={222103},
  pages={1--21},
  year={2020}
}

Reference

  1. Jittor
  2. mmrotate
  3. Detectron2
  4. mmdetection
  5. maskrcnn_benchmark
  6. RotationDetection
  7. s2anet
  8. gliding_vertex
  9. oriented_rcnn
  10. r3det
  11. AerialDetection
  12. DOTA_devkit
  13. OBBDetection

More Repositories

1

jittor

Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.
Python
3,081
star
2

JittorLLMs

่ฎกๅ›พๅคงๆจกๅž‹ๆŽจ็†ๅบ“๏ผŒๅ…ทๆœ‰้ซ˜ๆ€ง่ƒฝใ€้…็ฝฎ่ฆๆฑ‚ไฝŽใ€ไธญๆ–‡ๆ”ฏๆŒๅฅฝใ€ๅฏ็งปๆค็ญ‰็‰น็‚น
Python
2,363
star
3

JNeRF

JNeRF is a NeRF benchmark based on Jittor. JNeRF re-implemented instant-ngp and achieved same performance with original paper.
C++
636
star
4

jrender

Jrender is an efficient differentiable rendering library implemented in jittor.
Python
316
star
5

JSeg

JSeg is a Semantic segmentation toolbox based on MMSegmentation and Jittor
Python
185
star
6

JGAN

JGAN model zoo supports 27 kinds of mainstream GAN models with high speed for jittor.
Python
169
star
7

PointCloudLib

Jittor Library for Point Cloud Processing
Python
114
star
8

segmentation-jittor

jittor segmentation lib
Python
61
star
9

LearnJittorBasicIn60Min

่ฎกๅ›พ้›ถๅŸบ็ก€ๅฟซ้€Ÿๅ…ฅ้—จๆ•™็จ‹๏ผˆ60ๅˆ†้’Ÿ๏ผ‰
Jupyter Notebook
28
star
10

OCR-Baseline

Python
20
star
11

PFSegNets-Jittor

Python
18
star
12

JSparse

JSparse is a high-performance auto-differentiation library for sparse voxels computation and point cloud processing based on TorchSparse and Jittor.
Python
17
star
13

unsup3d-jittor

Jittor Implementation for the pepar Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild (CVPR 2020 oral).
Python
17
star
14

lsgan-jittor

Python
16
star
15

ssd-jittor

Jittor object detection ssd(Single Shot MultiBox Detector) implemention.
Python
14
star
16

TrafficSignDetection

Python
13
star
17

cutt

CUDA Tensor Transpose (cuTT) library
C++
9
star
18

InstanceSegmentation-jittor

9
star
19

TsinghuaDogBaseline

ResNet-50 for TsinghuaDog classification
Python
9
star
20

deeplab-jittor

Python
9
star
21

shapenet-reconstruction-jittor

Python
6
star
22

mnistclassification-jittor

Python
4
star